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Abstract

Least squares multidimensional scaling is known to have a seri-
ous problem of local minima, especially if one dimension is chosen,
or if city-block distances are involved. One particular strategy, the
smoothing strategy proposed by Pliner (1986, 1996), turns out to be
quite successful in these cases. Here, we propose a slightly different
approach, called distance smoothing. We extend distance smoothing
for any Minkowski distance and show that the S-Stress loss function
is a special case. In addition, we extend the majorization approach to
multidimensional scaling to have a one-step update for Minkowski pa-
rameters larger than 2 and use the results for distance smoothing. We
present simple ideas for finding quadratic majorizing functions. The
performance of distance smoothing is investigated in several examples,
including two simulation studies.
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1 Introduction

The main purpose in least squares multidimensional scaling (MDS) is to
represent dissimilarities between objects as distances between points in a low
dimensional space. At the introduction of computational methods for MDS,
it was realized that gradient based minimization methods can only guarantee
local minima that need not be global minima. For example, Kruskal (1964)
remarks: “If we seek a minimum by the method of steepest descent or by
any other method of general use, there is nothing to prevent us from landing
at a local minimum other than the true overall minimum.”

For a review of the local minimum problem in MDS and the severity of the
local minimum problem, see Groenen and Heiser (1996). Several solutions
for obtaining a global minimum have been proposed with varying degree of
success, e.g., multistart (Kruskal 1964), combinatorial methods for unidimen-
sional scaling (Defays 1978; Hubert and Arabie 1986), combinatorial meth-
ods for city-block scaling (Hubert, Arabie, and Hesson-McInnis 1992; Heiser
1989), genetic algorithms (Mathar and Zilinskas 1993), simulated annealing
(De Soete, Hubert, and Arabie 1988), and the tunneling method (Groenen
1993; Groenen and Heiser 1996). A different strategy, based on smoothing
the loss function was applied successfully to unidimensional scaling (Pliner
1986, 1996) and to city-block MDS (Groenen, Heiser, and Meulman 1997).
The good performance of the latter strategy is remarkable, since it shows that
continuous minimization strategies (with a reasonable computational effort)
can be applied successfully to minimization problems that are combinatorial
in nature. The purpose of the present paper is to extend this distance-
smoothing strategy to any metric Minkowski distance and investigate how
well the strategy performs.

Let us describe formally least squares MDS. The objective is to minimize
what is usually called Kruskal’s raw Stress, defined as

AX) = 3wy (6 — (X))

i<
= Y wi;ok + Zwijd?j(X) =23 wi;6;5di;(X)
i<j 1<) i<J
= 73 +7°(X) - 2p(X), (1)

where the objects are represented in a p-dimensional space by points with
coordinates given in the rows of the n x p matrix X, 4;; is a dissimilarity
between objects ¢ and j, w;; is a given nonnegative weight, and the Minkowski



distance d;;(X) is defined as

x)= (S et o

s=1

with ¢ > 1 the Minkowski parameter. Note that special cases of Minkowski
distances include the city-block distance (¢ = 1), the Euclidean distance
(¢ = 2), and the dominance distance (g = o).

To see why local minima occur, consider the following example with n = 4
using Euclidean distances in two dimensions. We investigate the Stress values
for point 4, keeping point 1 fixed at (0, 0), point 2 at (5, 0), and point 3 at
(2, —1). Suppose that the relevant dissimilarities are §,4 = 5, d24 = 3,834 = 2,
so that the varying part of Stress can be written as

o} (za1,702) = (5= [(za1 — 0)® + (za2 — 0)*]'/%)% +
(3 — [(za1 ~ 5)* + (z42 — 0)*]/%)* +
(2= [(za1 — 2)* + (za2 + 1)?]1/?).

A graphical representation of the single error term (5 — [(z4; — 0)% + (z42 —
0)?]}/2)? is given in Figure (1). If this were the only error term in Stress, then
a nonunique global minimum of zero Stress can be obtained by placing point
4 anywhere on the circle at distance 5 of the origin. However, considering all
three error terms in o(z4;, z42) simultaneously, see Figure 2, Stress has two
local minima. Even though the single error terms have a simple shape (a
peek and circular valley), their sum gives rise to the occurrence of multiple
local minima.

This paper is organized as follows. First, we introduce distance smoothing
for multidimensional scaling and the Huber function involved. Then, we
discuss majorizing functions needed to extend the majorization algorithm for
MDS of Groenen, Mathar, and Heiser (1995) to include a one-step update
for Minkowski distances between Euclidean and dominance distance (2 <
g < 00). This extension is used in the majorization algorithm for minimizing
the distance smoothing loss function. To see how well distance smoothing
performs, a simulation study is performed on perfect and error perturbed
data. In addition, distance smoothing is applied to some examples from
the literature. Appendix A explains principles of iterative majorization to
minimize a function and methods to find majorizing functions. Appendix
B develops the majorizing algorithm for MDS and Appendix C presents the
algorithm for distance smoothing.
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Figure 1: The surface of the error term for objects 1 and 4 of the Stress

function, i.e.,
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Figure 2: The surface of the Stress function o(z4,z42) while varying the

location of point 4 keeping the others fixed.



2 Distance Smoothing

It is well known that local minima occur in MDS. For unidimensional scaling,
Pliner (1996) suggested the idea of smoothing the absolute dlﬁerence |zis ~
z;s| by ge(zis — z;5), where g.(t) is defined by
] 2 (Be—[t]) /3 +€/3, if |t <e,
at) = { ], if |t > c. (3)

The smoothness i1s controlled by the parameter e. As e approaches zero,
g<(t) approaches [t|, but for large €, g.(t) is considerably more smooth than
|t|. The basic idea of smoothing is to replace the absolute values in d;;(X)
by g¢.(t), and minimize Stress using this smoothed distance function with
decreasing €. Pliner (1996) was very successful in locating global minima in
unidimensional scaling, which is infamous for its many local minima.

Groenen et al. (1997) applied this idea to city-block MDS, which also has
many local minima. They introduced the term distance smoothing. Their
results where also quite promising when compared to other strategies for city-
block MDS. Here, we extend distance smoothing to any Minkowski distance
(with ¢ > 1) and provide a majorization algorithm yielding algorithm with
monotone nonincreasing series of Stress values without a stepsize procedure.
Pliner (1996) briefly suggests how to extend distance smoothing beyond uni-
dimensional scaling but the suggested algorithm needs a stepsize procedure
in every iteration to retain convergence.

Instead of g.(t), one might as well use other functions that have the
property of being smooth if |t| < €, and approach |t| for large |t| (Hubert,
personal communication). One such function is used in location theory, where

ft) = (& + ) (4)

is used to smooth the distance (see, e.g., Francis and White 1974; Hubert
and Busk 1976). A disadvantage of f(t) in comparison with g.(t) is that
fe(t) # |t| unless € = 0, whereas g.(t) = |t| for any |t| > e. Therefore, we
shall not use f(t) in the following.

A third alternative is derived from the Huber function — well known in
robust statistics — (Huber 1981, p. 177), i.e

e+ Le, if |t <
— 2 2 k)
w0 = { o, it > e, )

which differs from the Huber function by the constant term le. The left

panel of Figure 3 shows |t| and the two smoothing functions g.(t) and h(t).

)
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Figure 3: The left panel shows |t| and the smoother functions ge(t) of Pliner
(1996) and the Huber function h.(t). The right panel displays h.(¢) with
v = .6922¢ so that h,(t) resembles g.(t) as closely as possible.

We prefer the Huber smoother over g.(t), because (a) it is more simple
(he(t) is quadratic in ¢, whereas g(t) is a third degree polynomial), (b) it
is well known in the literature, (c) by proper choice of € it can approximate
ge(t) closely, and (d) we shall see later that the S-Stress loss function is a
special case.

How should one choose € in h(t) such that it matches g.(t) as closely as
possible? For the purpose of this comparison, let us replace € in k() by 7.
To measure the difference between the two curves, we consider the squared
area spanned between 0 and € of the differences between the curves, i.e.,
7(7) = [J5(h(t) — ge(¢))?dt. Elementary calculus yields that

5 4 63

g LA 2 s

"0 =ia et 59 Tew (®)

which is minimized by choosing v = .692258/¢. Thus, for this choice of 7,

the two smoothers are as close as possible, which is illustrated in the right
panel of Figure 3.

The distance smoothing is obtained by replacing every absolute difference

|zis — ;5| in (2) by the smoother hc(z;s — z;5), i.e.,

di;(X[e) (Zh (i — xjs)l/q. (7)

The distance smoothing loss function becomes

U?(X) = sz] [51_7 1] Xi )]
1<.7
_ Z wi; 62 + Z wi;ds; (X|e) — 2 wijbijdi;(X]e)
z<_7 1<j 1<
= 73 + n2(X) — 20(X). (8)
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Figure 4: The surface of the error term for objects 1 and 4 of the distance

smoothed loss function o¢(z41, z42) in which the location of point 4 is varied
while keeping point 1 fixed at (0, 0).

This function has the property that it approaches ¢(X) as € tends to zero.
Furthermore, for any € > 0, the gradient and Hessian are defined everywhere.
For values of ¢ that are sufficiently large, ¢?(X) is more smooth than o*(X).
This property can be seen when the single error term of o(z4;, z42) in Figure
1 is compared with the same error term of the smoothed function o¢(z4;, T42)
in Figure 4. Another property shown in Figure 5 is that by increasing the
smoothing parameter €, o¢(zZ4;, Z42) the two local minima melt into a single
minimum.

The distance smoothing algorithm for MDS consists of the following steps:

1. Initialize: set € <+ €y, fix number of smoothing steps rmax, set start
configuration X, to a random configuration.

2. For r = 1 to rmax do:

e Reducee, ie, € ¢ €(rmax — 7+ 1)/Tmax-

e Minimize 0?(X) using start configuration X, ;. Store the mini-
mum configuration in X,.

3. Minimize 0?(X) using start configuration X

Tmax *

Pliner (1996) recommended for unidimensional scaling using g.(t) to choose
€0 as 2maXici<cn M Y5y 0ij. Groenen et al. (1997) used this choice
of €y for city-block distance smoothing also with success. However, for
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Figure 5: The surface of the distance smoothed loss function o(z4;,z42)

while varying the location of point 4 keeping the others fixed. In the upper

panel the smoothing parameter ¢ is set to 2 and in the lower panel to 5.



g > 1, distance smoothing works better if the ¢y is chosen wider, i.e.
q1/2.6922 maxlsisn(zg‘zl Wij)_l Z;-l___l w,-jé,-j.

A final remark concerns nonmetric MDS, or, more general, MDS with
transformations of the proximities. In this case, we can proceed as in ordi-
nary nonmetric MDS (e.g., see, Kruskal 1964, or, Borg and Groenen 1997):
in (8) the &;’s are replaced by d;;’s, where the d;;’s are least squares approx-
imations to the distances, constrained in ordinal MDS to retain the order of
the proximities and have a fixed sum of squares.

?

2.1 S-Stress as a Special Case of Distance Smoothing

Consider city-block MDS (q = 1). Let 7 be the squared dissimilarities, set
6ij = 3ep + 3m%e7!, and choose ¢ large. Let us assume that d;;(X]e) < € so
that d;;(X]|e ) = —e'l Y s(zis — Tj5)® + Lep. This assumption is easily fulfilled
by setting € large enough, say € = max;<; d;;, and doing a few minimization
steps of 02(X). Then, 0%(X) can be written as

€

JS(X) = Ewu i — dij( XI )]

i<y
2
= ZwiJ[ 6p+; 3_7 -l IZ Tis — Tjs) _%Cp]
i<j
2
= 1/(4€%) 3wy [W?j — 2 _(@is — mjs)2] 7 (9)
1<g $

which is exactly 1/(4€*) times the S-Stress loss function of Takane, Young,
and De Leeuw (1977). This shows that S-Stress is a special case of distance
smoothing.

3 Majorizing Functions for MDS with
Minkowski Distances

To minimize (1) over X, we elaborate on the majorization approach to multi-
dimensional scaling (see, e.g. De Leeuw 1988), and in particular its extension
for Minkowski distances proposed by Groenen et al. (1995). For more de-
tails on iterative majorization, we refer to De Leeuw (1994), Heiser (1995),
or, for an introduction, to Borg and Groenen (1997). Some background and
definitions of iterative majorization are discussed in Appendix A.

To majorize ¢*(X) in (1) we apply linear majorization to —p(X) and
quadratic majorization to n?(X). The sum of these majorizing functions will
majorize o%(X).



3.1 Linear Majorization of —d;;(X)

Groenen et al. (1995) majorized —p(X) as follows. First, we notice that
—p(X) is a sum of —d;;(X) weighted by the nonnegative value w;;6;;. Using
Holder’s inequality, Groenen et al. proved the linear majorizing inequality

P
Z xzs x]s yzs - y]s)bS]lsa (10)
where

( . oy 92

m:ﬁl—y{% if lyis —y;s| >0 and 1 < ¢ < o0,

1]
bf;s— 0 lf |yis—yjs| = 0 and 1 Sq<OO,

|yis — yis| ™ if |yis — yjs| > 0,9 = o0, and s = 57,

[ 0 if (Jyis — yjs| = 0 or s # 57) and g = o0),

and s* is defined for ¢ = oo as the dimension on which the distance is
maximal, i.e., di;(Y) = |yis — yjs|.

3.2 Quadratic Majorization of dZ(X)

Here we concentrate on majorizing d7;(X). Groenen et al. (1995) proposed a
quadratic majorizing inequality for the squared distance for 1 < ¢ < 2, i.e.,

r
Z(X) < Yl (g, - 25)?, (11)

where

(1€9<2) __ |yis - yjs|q—2

Qs - -2
! i (Y)

Note that if d;;(Y) = 0 or |yis — yjs| =0, (11) may become indetermined. If
this is the case, we replace |y;s — y]-s|q‘2/d?j'2(Y) by a small positive value.
This substitution violates the equality condition of the majorizing function,
but by making it small enough, it will usually not affect the behavior of the
algorithm. We will assume this implicitly in the sequel, whenever needed.
For ¢ > 2 the inequality sign in (11) is reversed, so that it cannot be used
anymore as a quadratic majorizing function. In the sequel of this section
we develop a new quadratic majorizing inequality for this case. We need an
upperbound of the largest eigenvalues of the Hessian of d?j(X). For notational
convenience we substitute |z;; — ;5| by £ so that the squared Minkowski

10



distance becomes d2(t) = (3F_, t9)?/9. The elements of the gradient are
d?(t)/0ts = 2t771/d?7%(t). The Hessian H = V2d?(t) can be expressed as
the difference H = 2(¢ — 1)D — 2(¢ — 2)hh’, where D is diagonal matrix
with diagonal elements (¢5/d(t))?~? and h has elements (¢,/d(t))?"!. First,
we note that the normalization of t is irrelevant, because t; is divided by d(t)
everywhere in H. Thus, without loss of generality, we may assume d(t) = 1,
so that the diagonal elements of D simplify into t2~2 and the elements of h
into ¢27!. We also assume for convenience that #; is ordered decreasingly.
Let A(H) denote the largest eigenvalue of H. An upper bound of the
largest eigenvalue can be found as follows. Let D~1/2 be the diagonal matrix
with elements ¢1~9/2 if t, > 0 and 0 otherwise. Then, H can be expressed as:

H = D'?[2(g— 1)I — 2(q — 2)D~Y/2hh'D~V/?|D'/? = D/2VD'/2,

Magnus and Neudecker (1988, p. 237) state that A(H) < A(D)A(V). The
largest eigenvalue of D is equal to one, which is obtained by choosing ¢; = 1
and the remaining t; = 0 (1 < s < p). The largest eigenvalue of V is equal
to 2(g— 1), since D~Y/2hh'D~'/2 has eigenvalue 1, so that V has eigenvalues
2 for the eigenvector D~/?h and 2(g — 1) for the remaining eigenvectors.
Thus, an upper bound for the largest eigenvalue of H is A = 2(g — 1).
Numerlcal experimentation yields an even lower upper bound for g > 2,
i.e., \(H) < (g — 1)2%/4, where equality occurs whenever t; = t, and t3 =
.. =t, = 0. However, we were not able to find a proof for this proposition.
Combining the results above with those on quadratic majorization at the
end of Appendix A, we get a quadratic majorizing function for the squared
Minkowski distance with ¢ > 2, i.e.,

4

r
d4(X) < a3 (@i — £4)% — 2D (mis — T30) (i — yis)bi D) + 7P (12)

s=1 s=1
where
al>? = )\/2
> _ { a@>2) — |y, — y;, |72 /dTA(Y) i Jyis — y3s| > 0
e 0 if |yis — yss| = 0
PP = "”)Z (yis — yjs)? — d5(Y).

For the dominance distance, ¢ = 00, A also becomes oo, which is clearly
not desirable. For this case, a better quadratic majorizing function can be
found. Let t; be defined as above, where the elements are ordered decreas-
ingly. This means that d?(t) = (I, t2°)¥* = (max,t,)? = t2. To find a

11



quadratic majorizing function f(t,u) = a(u)t't — 2t'b(u) + c(u), we need to
meet four conditions:

1. @(u) = f(u,u),
2. Vd*(u) = Vf(u,u),

3. d*(Pu) = f(Pu,u), where P is a permutation matrix that interchanges
u; and ug, so that Pu has elements uy, uy, us, ug, .. ., up, and

4. Vd*(Pu) = Vf(Pu,u).

These conditions imply that f(t,u) should touch d?(t) at u and at Pu. Any
f(t,u) satisfying these four conditions has a > 1 and, hence, is a majorizing
function of d(t). Conditions (2) and (4) yield

2u, [ 2au; — 2b; | 0 2au, — 2b; |
0 2(1‘11,2 - 2b2 2’11,1 2au1 - 2b2
0 —_ 2(1'11,3 - 2b3 and 0 —_ 2GU3 - 2b3
0] | 2au, —2b, | | 0 | | 2aup, — 20, |

This system of equalities is solved by a = u;/(u; — uz2), by = b, = aus, and
bs = au; for s > 2. Since u; > u,, a is greater than 1, so that the majorizing
function has a greater second derivative than d?(t). If u; = u,, then a is not
defined. For such cases, we add a small value ¢ to u;. By choosing € small
enough, convergence is retained for all practical purposes.

Let &, be an index for pair ¢, 7 that orders the values |y;s—y;s| decreasingly,
so that |yig, — Yies| < |Yis, — Yjeal < ... < |yig, — Yje,|- The majorizing
function for ¢ = oo becomes

d2(X) < a7 S (2is — £56)2 = 23 (@is — T5) (Yis — Y )b ) + €7 (13)

s

where
|yig, — Yjesl :
= if |Yigy — Yjen| — |Yige — Yise| > €,
o= = | Toiw — vis, - Ve — v T lvier — Yien| = lbis, — Ui
i1 — Y4 19 .
= .gm if [Yigy — Yior| — |Yig, — ig| < €,
b(qzoo) az(.?=OO) ‘ i if s % ¢13
i35 T ) gl ik “Yieal yp o g
I iyidn —Yie | ¢1

= = (@b — gy, ~ ys)? + dE(Y).

s

Appendix B combines the majorizing functions discussed here and presents
the majorizing algorithm for minimizing Stress.

12



in ¢ that majorizes h%(¢) such that the conditions Q1 to Q3 in Appendix A
are satisfied. This yields

B2 (i — 255) < al)(mig — 355)% — 2wis — 255)(Yis — yjo ) + ), (15)

tjs 155 9
where
aP?) = K,
(R2) (yis _ y’s)2 1

b(hz) _ {a —TL_E lflyis_yjs|<€’

J a™) —1 if |yis — yis| = €,

h2 2 K2
dis) = h2(uis — i) — e (yis — 43s)” + 2(uis — ¥3s) b, -

Appendix C combines the majorizing functions to obtain a majorization
algorithm for minimizing o?(X).

5 Numerical Experiments

To test the performance of distance smoothing, the method was applied to
several data sets, where the following factors are varied: (a) the dimensional-
ity, (b) the Minkowski parameter ¢, and (c) the minimization method. Qur
main interest here was to study how often the method is capable in detecting
the global minimum. Note that we report the Kruskal’s Stress-1 values, o,
which are equal to (6%(X)/n%)"/? at a local minimum if we allow the con-
figuration to be optimally dilated (Borg and Groenen 1997, p. 201). The
minimization methods we used are: (a) distance smoothing, (b) SMACOF
(Scaling by MAjorizing a COmplicated Function) of De Leeuw and Heiser
(1977) for ¢ = 2, Groenen et al. (1995) for 1 < ¢ < 2, and Section 3 for
g > 2, and (c) KYST of Kruskal, Young, and Seery (1978).

The algorithms were specified as follows. We used 20 smoothing steps
for distance smoothing. The relaxed update was used. Every smoothing
step was terminated whenever the number of iterations exceeded 1000 or two
subsequent values of 6%(X)/n? did not change more than 10°. SMACOF
and KYST also had a maximum of 1000 iterations or where terminated if
Stress differed less than 10~8 for SMACOF, or the ratio of subsequent Stress
values was between 1 and .999999 for KYST.

We report two simulation studies and two experiments on empirical data.

5.1 Perfect Distance Data

The first experiment involved the recovery of perfect distance data varying
dimensionality (p = 1,2, or 3) and Minkowski parameter (¢ = 1, 2, 3, 4, 5,

14




4 Majorization Functions for
Distance Smoothing

Below we derive majorizing functions needed for minimizing o2(X). We use
the majorizing inequalities of the previous section by substituting h.(zis—z;s)
for |zis — s, he(yis — Yjs) Tor |yis — y;s|, di;(Xle) for d;;(X), and d;;(Y|e) for
d;;(Y). This substitution leads to functions in h%(z;x — z;x) and —he(z —
z;x). Thus, to majorize 0?(X) we only have to derive majorizing inequalities
for A2(zi — zjx) and —h (T — zjk).
Consider —h(z;x — k), or, after substitution of ¢ = zy — zjk, —he(t).
If |t| > e then h.(t) = [t|. Applying the Cauchy-Schwarz inequality for one
term only gives
s -1
|l
(Kiers and Groenen 1996). Note that in (5) |u| > € > 0, so that division by
zero cannot occur. On the other hand, if |t < €, then we have to majorize
—he(t) = —1t?/e — Je. This function is concave in ¢ and, thus, can be
linearly majorized. The majorizing function is derived from the inequality
(t —u)? > 0, or, equivalently, —t? < u? — 2tu. Using these majorizing
inequalities and multiplying with A.(y:;x — y;x), we obtain the result

—h —-h
—he(is — Tis)he(yin — Yit) < —(Tis — T3) (is — Yjo) 05" + €57, (14)

where
R { 1 if |yis — yis| 2 ¢,
R he(yis — yjs) /e if [yis — yjs| < e,
NS { 0 if |yis — yis| =
e he(is — Yis)[(Yir — Yin)? /€ — he(yis — yis)] if |yis — yis| < €

What remains to be done is to find a (quadratic) majorizing inequality
for h2(t). Since h((t) is convex in ¢ on the interval —e < t < ¢, so is its square.
Convexity implies that on this interval h%(t) has a positive second derivative.
Because at |¢| = ¢ the functions [1¢%/€ + 1€]? and ? have the same function
value and the same first derivative, there must exist an upper bound « of
the second derivative ~A2(¢). This implies that on the interval —e < ¢t < ¢
the curvature of h%(t) never becomes larger than . It can be verified that
k = 4 at t = e. Outside this interval, the second derivative of h%(t) = ¢?
equals 2, so that the maximum second derivative of hZ(t) over the entire
interval equals max(x,2) = . Therefore, there exists a quadratic function

13



Dimension 1

,

Smooth
SMACOF
KYST

Figure 6: Distribution of Stress value of 100 random starts for perfect dis-
tance data in one dimension.

Smooth, 2 dim SMACOF, 2 dim KYST, 2 dim
0.6 0.6 0.6
0.5 0.5 0.5
0.44 0.4 0.43
o 0.3 » 0.34 o 0.3
o« 3 (4
2 ] 2 s
@ 0.2 @ o.zJj @ 0.2
019 | R ° 0.1 0.14
] 1° B E ) ] H i B
0048 & & # ® - 0.04 0.0
-0.1 1 1 L ] T -0.1 i T 1 1 T 01 1 i LIRRR T
1 2 3 4 5 o= 1 2 3 4 5 < 1 2 3 4 5 o
Minkowski parameter Minkowski parameter Minkowski parameter

Figure 7: Distribution of Stress value of 100 random starts for perfect dis-
tance data in two dimensions.

and o). Note that the Minkowski parameter is irrelevant for unidimensional
scaling. For each combination of p and ¢ a random configuration of ten points
was determined and their distances served as the dissimilarity matrix. Then,
for each of the three minimization methods the Stress values of the local
minima was recorded for 100 random starts. Figures 6, 7, and 8 give the
distribution of the Stress values in 1, 2, and 3 dimensions. The distribution
of the values are presented in boxplots, where the ends of the box mark the
25th and 75th percentile, the end points of the lines mark the 10th and 90th
percentile, the line in the box the median, the square marks the mean, and
the open circles the extremes.

In one dimension, SMACOF and KYST only rarely succeeded in finding
the zero Stress solution, whereas distance smoothing always found the global
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Smooth, 3 dim SMACOF, 3 dim KYST, 3 dim

]
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Figure 8: Distribution of Stress value of 100 random starts for perfect dis-
tance data in three dimensions.

minimum. These results are completely in line with those found by Pliner
(1996) and with the fact that unidimensional scaling is a combinatorial prob-
lem (see, e.g., De Leeuw and Heiser 1977; Defays 1978; Hubert and Arabie
1986; Groenen and Heiser 1996), which makes it hard to find proper local
minima for gradient based minimization methods as SMACOF and KYST.

In two dimensions and for all g except g = oo, almost all runs of distance
smoothing yielded a zero Stress local minimum. SMACOF and KYST had
more difficulty in finding the global minimum, especially for ¢ = 1,4, and
5. KYST performed remarkably well for ¢ = 3. For ¢ = 2, SMACOF and
KYST found two different Stress values, i.e., either 0 or 0.085.

In three dimensions, distance smoothing still performed well, with the
exception of ¢ = 1 where about 30% of the solutions yielded nonzero Stress
values and ¢ = 5 where about 60% yielded nonzero Stress. SMACOF and
KYST had difficulty in finding zero Stress solutions, specifically for ¢ = 1.

In two and three dimensions, all three methods had difficulty in recon-
structing the zero Stress solution if the dominance distance is used. However,

in this case KYST performed systematically better than distance smoothing
and SMACOF.

5.2 Error Perturbed Distance Data

In real applications, it is not very likely to come across perfect distance data.
Therefore, we have set up a simulation experiment involving error perturbed
distances to investigate how distance smoothing performs. Apart from the
three minimization methods we varied the following factors: n = 10,20;
p = 2,3; ¢ = 1,2,00; error = 15%, and 30%. This design produces 24
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different dissimilarity matrices for which 100 random starts were done for
each of the three minimization methods yielding a total of 7200 runs. To
obtain an error perturbed distance matrix A we started by generating a
configuration X of randomly distributed points within distance one of the
origin. Then, the dissimilarities were computed by

1/q
(Z lz(e) (E) ) (16)

(Ramsay 1969), where z( ) =z + N(0,¢e), where N(0,e) denotes the nor-
mal distribution with mean zero and variance e. One of the advantages of
this method is that the dissimilarities are always positive while there is an
underlying true configuration.

Table 1 reports the average Stress and the standard deviation for each
cell in the design. Distance smoothing seemed to perform very well for city-
block distances, much better than SMACOF and KYST. Also for Euclidean
distances, the average Stress was lowest for distance smoothing with a stan-
dard error of almost zero, indicating that distance smoothing almost always
located the global minimum. For the dominance distance, distance smooth-
ing performed worse than KYST: the average Stress for distance smoothing
was systematically higher than for KYST. SMACOF showed the worst per-
formance of the three methods in this case.

An analysis of variance was done to find the significant effects in the
design. We chose all those effects which were able to explain more than 5%
of the variance: we included the main effects and two two-way interactions
(method by ¢ and g by p). The results are reported in Table 2. This model
explains about 87% of the total variance. We see that the method does make
a difference, and in particular the methods differed significantly for varying
Minkowski distances.

To see which method was best capable in locating the global minimum,
we compare the minimal Stress values found in 100 random starts in Table 3.
For ¢ = 1, distance smoothing found the lowest minimum in all cases, KYST
found it only once, and SMACOF never found it. For ¢ = 2, all methods
found the same lowest Stress. For ¢ = co, KYST always found the lowest
Stress. Using a rational startconfiguration obtained by classical scaling, the
three methods behaved as we saw before (see Table 4). Distance smoothing
performed best for ¢ = 1. For ¢ = 2, the three methods almost always
found the same Stress. For ¢ = oo, KYST performed better than distance
smoothing and SMACOF.
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Table 1: Average Stress & over 100 random starts (and the standard deviation
s.d. o) for error perturbed distances (15% and 30%) varying dimensionality
p (two and three), number of objects n (10 and 20), and Minkowski distance
(city-block, Euclidean, and dominance).

smooth SMACOF KYST
p n % ¢ sd. .o g sd.o g sd. o
g=1
2 10 15 212 .001 .330 .062 283 .049
30 272 .000 400  .057 346 042
2 20 15 335 .000 426 031 405  .028
30 .396 .005 .469 .022 450  .019
3 10 15 .139 .005 .249 .053 205  .033
30 170 .004 260  .041 220  .030
3 20 15 .256 .002 326 .022 309 .017
30 275 .002 348 .020 335 .019
g9=4
2 10 15 235 .000 244 016 243 014
30 .222 .000 245 033 244  .033
2 20 15 .320 .000 331 .015 327 .012
30 .330 .002 336 .013 335 .013
3 10 15 159 .000 .164  .008 .164  .008
30 .205 .000 .205  .000 .205  .000
3 20 15 .258 .000 262 .005 262 .005
30 316 .001 318 .003 318 .003
g=00 .
2 10 15 202 045 .338  .060 280  .047
30 .349 .031 387 044 333 .031
2 20 15 .390 .016 420 .023 378 016
30 424 .017 .454 .024 414 .020
3 10 15 215 .042 255  .053 185 .040
30 214 .038 .241 .043 .189  .038
3 20 15 .316 .023 355 .026 200 .026
30 .350 .017 379 .024 324 .019
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Table 2: Analysis of variance of the error perturbed distance experiment.

Source of variation SS DF MS F  Sigof F

n 18.43 1 18.43 19800.73 .000
e 1.73 1 1.73 1859.89 .000
Method 2.55 2 1.28 1370.98 .000
q 5.30 2 2.65 2847.04 .000
P 12.09 1 12.09 12990.29 .000
Method by ¢ 2.37 4 59 63744 .000
pbygq 1.06 2 .53 571.52 .000
(Model) 43.53 13 3.35 3598.44 .000
Residual 6.69 7186 .00

(Total) 50.22 7199 .01

Table 3: Minimum values of Stress over 100 random starts of the same ex-
periment reported in Table 1.

g=1 g=2 g=00

p n % smooth SMACOF KYST smooth SMACOF KYST smooth SMACOF KYST

210 15 208 209 212 235 235 .235 .205 223 203
30 272 297 272 222 222 222 .294 .308 .289

220 15 335 342 337 319 319 319 .357 375 .346

30 391 425 401 .328 .328 .328 .389 .400 374
310 15 137 .161 .150 159 159 159 139 .146 120
30 167 173 172 205 .205 205 119 153 117
320 15 .251 285 271 .258 .258 258 .269 281 .246

30 .268 .303 .298 315 315 315 313 316 .281
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Table 4: Stress values obtained by using classical scaling as start configura-
tion.

g=1 g=2 g=00

p n e€% smooth SMACOF KYST smooth SMACOF KYST smooth SMACOF KYST

210 15 212 209 215 235 .235 235 .249 238 .233
30 272 .287 .287 222 .222 222 .306 .301 .296

220 15 .335 391 387 319 319 319 .368 .368 .356
30 402 429 424 .328 331 331 .389 398 .380
310 15 137 .155 .166 .159 .159 .159 .203 .200 .186
30 167 .189 185 .205 .205 205 .199 224 119

320 15 .256 .270 .264 258 .258 .258 .284 .296 .265
30 275 292 .284 317 317 317 311 335 .292

Table 5: Best Stress values of 10 random starts of MDS on cola data of Green

et al. (1989) in two dimensions.
Distance
¢ Smoothing SMACOF KYST
1.00  .169437 218761  .192295
1.33 177194 178874  .179519
1.66 .185316 .186848  .186276
2.00 191782 191782 191978

5.3 Cola Data

The next data set concerns the cola data of Green, Carmone, and Smith
(1989) (also used by Groenen et al. 1995), who reported preferences of 38
students for 10 varieties of cola. Every pair of colas was judged on their sim-
ilarity on a nine point rating scale and the dissimilarities were accumulated
over the subjects. Table 5 reports the lowest Stress values found by SMA-
COF, KYST, and distance smoothing using 10 random starts. In all cases
distance smoothing found the best solution. The strategy of doing 10 ran-
dom starts of distance smoothing seems to be sufficient to locate (candidate)
global minima.
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5.4 Similarity Among Ethnic Subgroups Data

Groenen and Heiser (1996) studied the occurrence of local minima in a data
set of Funk, Horowitz, Lipshitz, and Young (1974) on perceived differences
among thirteen ethnic subgroups of the American culture. The data consist
of the average dissimilarity among 49 respondents who rated the difference
between all pairs of ethnic subgroups on a nine-point rating scale (1 = very
similar, 9 = very different). Using Euclidean distances, Groenen and Heiser
(1996) found many different local minima using multistart with 1000 random
starts. The lowest Stress value of 0.24546 occurred in 2.8% of the random
starts. (Note that Groenen and Heiser (1996) reported squared Stress values.)
Out of ten random starts, distance smoothing found the same minimum five
times (50%). This example indicates that the region of attraction to the
global minimum is greatly enlarged by using distance smoothing.

6 Discussion and Conclusion

In this paper we discussed how distance smoothing can be applied to MDS
with Minkowski distances. The Huber function was proposed for smoothing
the distances. The S-Stress loss function turned out to be a special case of the
loss function used by distance smoothing. We have extended the majorization
algorithm to minimize Stress with any Minkowski distance (with ¢ > 1) by
quadratic majorization. These results were used to develop a majorization
algorithm for minimizing the distance smoothing loss function.

Numerical experiments on several data sets showed that distance smooth-
ing is very well capable in locating a global minimum for small and moderate
Minkowski distances, especially for city-block and Euclidean distances. For
high g, notably for dominance distances, distance smoothing did not per-
form any better than a gradient method like KYST. For perfect distance
data, distance smoothing almost always found the zero Stress solution for
Minkowski parameter between 1 and 5, in contrast to two competitive meth-
ods, SMACOF and KYST, that often ended in nonzero local minima. Dis-
tance smoothing on perfect distance data in three dimensions did not always
find the global minimum. For nonperfect data, distance smoothing outper-
forms SMACOF and KYST for city-block and Euclidean distances and either
located the same candidate global minimum as SMACOF and KYST or found
lower global minima. However, for dominance distance, distance smoothing
did not perform better than KYST. Two examples using empirical data show
that the strategy of ten random starts of distance smoothing gives a (very)
high probability of finding the global minimum.
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Distance smoothing for the dominance distance did not perform up to
our expectations. Preliminary experimentation with an adaptation suggests
that the performance could possibly be improved upon, but the results are
too premature to justify inclusion in this paper.

Distance smoothing could be extended to incorporate constraints on the
configuration in confirmatory MDS (see De Leeuw and Heiser 1980). This
would allow to apply distance smoothing three-way extensions of MDS, such
as individual differences models. It remains to be investigated under what
constraints distance smoothing retains its good performance.

We conclude that distance smoothing works fine for unidimensional scal-
ing and the two important cases of city-block and Euclidean MDS, but that
it requires adjustments to deal with dominance distances. To find a good
candidate global minimum, 10 random starts of distance smoothing should
be enough unless the dominance distance is used.
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A TIterative Majorization

The main idea of iterative majorization is to operate on a simpler auxiliary
function —the magorizing function p(x,y)— whose value is always larger
than that of the original function, ¢(x) < p(x,y), but touches the origi-
nal function at a supporting point y, ¢(y) = u(y,y). Then the majorizing
function is minimized, which often can be done in one step. The result-
ing configuration, x*, necessarily has a function value that is smaller than
(or equal to) the function value at the supporting point, ¢(xt) < p(x*,y).
Therefore,

o(xt) < p(xt,y) < ply,y) = oy). (17)

This new configuration becomes the supporting point of the next majorizing
function, and so on. We iterate over this process until convergence occurs due
to a lower bound of the function or due to constraints. This brings us to one
of the main advantages of majorization over many traditional minimization
methods, which is that a converging sequence of function values is obtained
without a stepsize procedure that may be computationally expensive and
unreliable.

A useful property for constructing majorizing functions is: if pi(x,y)
majorizes ¢;(x) and po(x,y) majorizes ¢o(x) then ¢;(x)+ ¢2(x) is majorized
by p1(x,¥) + pa(%,y)-

De Leeuw (1993) proposed to distinguish two sorts of majorization: (1)
linear majorization of convex function, i.e., #(x) < p(x,y) = x'b(y) + ¢(y),
and (2) quadratic majorization of a function with a bounded second derivative
(Hessian), i.e., ¢(x) < u(x,y) = X’ A(y)x—2x'b(y)+c(y). To obtain a linear
majorizing function, we have to satisfy three conditions:

L1: ¢(x) must be concave.

L2: ¢ has to touch y at the supporting point y, i.e., ¢(y) = p(y,y) =
y'b(y) + ().

L3: ¢ and p have the same tangent at y if the gradient Vé(x) = d¢(x)/0x
exists at y, i.e., Vo(x) = Vu(x,y) = b(y).

Note that concavity of ¢(x) ensures that the linear function p(x,y) is always
larger than (or equal to) ¢(x). These three requirements are fulfilled by
choosing b(y) = Vé(x) and c(y) = ¢(y) — y'b(y).

For quadratic majorization, it is assumed that ¢(x) is twice differentiable
over its domain. To obtain a quadratic majorizing function, we have to
satisfy the conditions:
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Q1: The matrix of the second derivatives of ¢(x), V2¢(x), must be bounded,
Le., X' V2¢(x)x < 3x'A(y)x for all x.

Q2: ¢ has to touch p at the supporting point y, i.e., ¢(y) = p(y,y) =
Y'A(y)y —y'b(y) + <(y)

Q3: ¢ and p have the same tangent at y, i.e., Vé(x) = Vu(x,y) =
2A(y)y — 2b(y).

Given an A(y) that satisfies condition Ql, the other two conditions are

satisfied by choosing b(y) = A(y)y — ;Vé(y) and c(y) = é(y) +y'A(y)y -
¥'Vé(y). It can be hard to find a matrix A(y) that satisfies condition Q1.
However, in the algorithmic sections we provide some explicit strategies for
finding A(y).

B A Quadratic Majorization Algorithm for
MDS with Minkowski Distances

Here we combine the majorizing functions for d%(X) and d%;(X) from Section
3 to obtain a majorizing function for Stress.
Multiply (11), (12), and (13) for majorizing d%(X) by w;;, multiply (10)
by 2w;;é;;, and sum over all 7, j. This operation gives
o*(X) < wXY)=n8+3 ) lais|(zis — zj5)°
s i<j
=2 [bissl(zis — z56)(yis — is) + ¢
K] i<_7'

= 15+ X A(Y)x, —2)_xBi(Y)y. +(Y),  (18)

where x, denotes column s of X, A;(Y) has elements

—w;;all5?? ifi# jand 1< g <2,
—wijaé”) ifi # j and ¢ > 2,
—wijaij=°°) if ¢ # j and ¢ = oo,
—Xjgitijs if1=7,

B,(Y) has elements

—wij5ijb(-1) ifitjand 1 <q<2

1S
—w;; [0 + 89P] ifi £ jand ¢ > 2,
—w,-j[cs,-jbfjg + b§3=°°)] if i # j and q = o0,

_Zj:,éibijs if 2 =j’

bijs
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and ¢(Y) is defined as

0 ifi#j7and1<¢g<2,
oY) = § Xigj wsjcz('(3>2) if 1 #7 and g > 2,
Yicjwiesi—?) if i # j and ¢ = co.
Since the right-hand-part of (18) majorizes (1), we have equality if ¥ = X.
The minimum of x(X;Y) update is obtained by setting the gradient of
the majorizing function x(X;Y) equal to zero and solve for x, i.e.,

X; = As(Y) Bs(Y)ys (19)

for s = 1,...,p, where A,(Y)™ is any generalized inverse of A;(Y). A

convenient generalized inverse for A;(Y) is the Moore-Penrose inverse, which

is, in this case, equal to (A;(Y)+11')"! —n~211’ with 1 an n vector of ones.
The majorization algorithm can be summarized as

1. Y «Y,.

2. Find X* by (19) for which p(X*,Y) = minx u(X,Y).

3. If 0%(Y) — 0%(X"*) < ¢ then stop. (¢ a small positive constant.)

4. Y + X* and go to 2.

Note that the convergence results in Groenen et al. (1995) still hold.
De Leeuw and Heiser (1980) and Heiser (1995) have shown that using the

update 2X* —7Y, the so-called relaxed update, in step 2 may half the number
of iterations without destroying convergence.

C A Majorizing Algorithm for Distance
Smoothing

To find a majorizing function for ¢2(X), we use the results from the previous
section, where |y;; — y;s| is substituted h(y;s — y;5) and d;;(Y) by d;;(Yle).
Then, (z:s — z;5)? is substituted by h2(y;s — y;s), which is majorized by (15),
and —(z;s — ;5) is substituted by —h.(yis — y;5), which is majorized by (14).
This yields
olX) < p(XY) =+ DY lali (i - 25)?
s 1<
~230 Y [ (is — o) (vis — yss) + ¢
s 1<j

n5 + 2 AL (Y)x, - 23 xBO(Y)y, +9(Y).  (20)
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The matrix A{)(Y) has elements

—w,-ja(hz)af-;ssqszle) ifi#jand 1< qg<2,

NOR B’ jaW)a(e>209)  if £ jand g > 2,
s —w;;alh )a(q_wle) ifi# jand ¢ =0
T if i = j,

where af;.; 23 )equals hg—z(yis—yjs)/d3]72(Y| ), al#>?l) equals A, and a(q =oole)
equals

he(yig, — Yio,) :
o if he(Yio, — Yioy) — he(Yioy, — Yioy) > €
he(Yis, — Yior) — he(Yiso — Yien) Wior = Yier) = helvie: — vs60)

he i1 — Yj +e€ .
(y 1 syjdn) if he(yiq51

— Yisy) — he(Yig, — Yio,) S €

with ¢, ordering h.(y:;s — y;s) decreasingly over s = 1,...,p. The matrix
B{)(Y) has elements bfjl equal to

—wu[éubfjs")bfjl‘) + g{1Sasp(F)) ifitjand1<q<2,
wi; [6:057601 + 8, h)bfjlee) +a@29p%)]  ifi £ jand ¢ > 2,
oole =oole 2 ep - .
g b Lo g i and g = 0
— L b ifi =3,
where
hI2(yis — Yis)
e if 1 < g< oo,
H0 _ di; (Yle)
js hc_l(yis - yjs) if qg=o0 and s = ¢1,
0 if ¢ = oo and s # ¢,
g0 _ @>29 _ R (yis — yjs)
1]s | dsj—2(Y|€) b}
(g=o0le) a(q_°°|€) if s # ¢1,
bijs = ) a0 hlVies —Yie) e o
i h (y2¢1 yj¢1)

For 1 < g < 2, the constant ¢(Y) is defined by
<g<2le) (h?) 1le) (=k
Z wU [agjls = | ) 5_15 + 61.165_1:!‘) 5_15 )]7
$,4<3

for 2 < g < oo by
Zwu (4>2l¢) Z (q>2|e) (h%) +b(q>2le) (=h) + 6 it (= h)],

1_15 1]s z]s 178 2_15
1<g 5,2<J
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for ¢ = oo by

wa[c(q=oo) + E wij[a(q=oo|c)c(h2) 4 b(q:oolc)c(—h) + (S{jb(llc)c(—h)],

17 1 1Js 1js 1js ijs “ijs
i< 5,8<7

where
c£?>2|6) = gle>209) SR (yis — yss) — d%(Ye),

cz(gzoolf) — E(Qb(q:oole) _ a(q:oole))hz(yz.s —yis) + d?j(Y|€)-

s

Since the right hand part of x(X;Y) majorizes 6?(X), we have equality if
Y =X.

The minimum of p.(X;Y) is obtained by setting its gradient equal to
zero and solve for xg, i.e.,

x, = AD(Y) BO(Y)y, fors=1,...,p. (21)
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