NONLINEAR METHODS FOR THE ANALYSIS OF
HOMOGENEITY AND HETEROGENEITY

Willem J. Heiser
Jacqueline J. Meulman

Department of Data Theory
University of Leiden

RR-93-03
Nonlinear Methods for the Analysis of Homogeneity and Heterogeneity

Introduction

Although nonlinear phenomena are ubiquitous in science and technology, the majority of methods for analyzing statistical data is linear. Part of an answer to the puzzling question of how such a discrepancy could have come into existence would seem to be that first approximations are hard to beat. Statistics often enters the stage when the subject of study is badly understood, and then it is sensible to use linear approximation as a first try. If linear approximation does reasonably well, not unfrequently after being aided by quite some effort on data cleaning and readjustment of residuals, the returns from bringing in nonlinearity are expected to be low. Another reason is the fact that linearity is a versatile and universal concept in statistics: a model may predict nonlinear regression (as in curve fitting), yet it will be called linear as long as it is linear in the parameters; an estimate may determine the shape of a nonlinear function (as in density estimation), yet the estimator will be called linear as long as it is linear in the data. In multivariate analysis, we often work in a linear space, with linear operators, under linear constraints, and with computation methods that have linear convergence rate.

The nonlinear methods to be discussed in this chapter share the characteristic that they try to catch certain nonlinear phenomena, even though they may have linear aspects too. This goal is achieved by invoking some family of nonlinear functions or transformations, and selecting one or a few members of that family in such a way that a particular statistical (or data analytical) aim is served by it. Many statistical aims involve a partitioning of variability into different homogenous components, and therefore it is useful to look at methods that maximize homogeneity or try to articulate heterogeneity. Our discussion starts with a closer look at these two related, fundamental concepts.

Homogeneity and heterogeneity of distributions

The distinction between homogeneity and heterogeneity is most frequently used in statistics in connection with samples from different natural populations, which may — or may not — exhibit identical behavior, or display similar characteristics. More generally, however, it refers to a qualitative comparison of *distributions*, which can be called, for example, homogeneous in their
variance and heterogeneous in their means. A distribution represents the variability (of either some sample or some population) in a certain aspect or characteristic. If a number of distributions are regarded as being the same, most often as the result of a hypothesis or a decision on the part of the data analyst (not necessarily a formal decision – it may well be by judgment), they are collectively called *homogeneous*, meaning of one kind. The most familiar example is the "independent identically distributed" assumption for random samples from a single source. If not regarded as being the same, distributions – or their elements – are called *heterogeneous*, meaning of different kinds. As is evident from the earlier example of the idealized circumstances in which the F-test applies, a set of distributions can be homogeneous in one aspect and heterogeneous in another, underlining the qualitative character of the distinction.

The relationship between homogeneity and heterogeneity is complex. First, it is asymmetric, in the sense that there are fewer possibilities to be "of one kind" than there are to be "of different kinds". In addition, it is a distinction that cannot be drawn on purely empirical grounds. The simple fact that two statistical units (or objects) have different measured values does not tell us much in this respect. Some observed difference of whatever magnitude does not contradict homogeneity – stochastic variation of a single kind – when initially assumed to be from one sample or population, while the same difference could confirm heterogeneity – systematic plus stochastic variation – when considered under the assumption of two or more samples or populations.

In multivariate analysis, the abstract concept of a distribution is to be preferred over sample or population, because it allows us to avoid the ambiguous use of these concrete terms when other aggregates than populations of individuals – for instance, sets of residuals or sets of variables – are being regarded as stochastic entities. Generally, the elements of any data analysis problem can be either fixed or stochastic; it is proper to use the latter term when and only when considering a distribution. The distinction between homogeneity and heterogeneity can be seen as a refinement of the more basic distinction between fixed and stochastic. Multivariate data are standardly arranged in a rectangular data matrix of units by variables, but such an arrangement leaves wide open the question of what should be regarded as fixed and what as stochastic in some specific form of data analysis. Indeed, it turns out that by applying this distinction not only to the set of units but also to the set of
variables, we obtain a novel classification of multivariate methods. The classification enables us to outline the material in the three parts of this chapter, and to put them into a broader perspective.

Fixed and stochastic (homogeneous or heterogeneous) sets of units and variables

All multivariate problems are characterized by the presence of several variables of interest, the analysis variables h_j, with $j = 1,\ldots,m$. Each variable h_j refers to a group of measurements or observations on the same N units, individuals, or objects. Suppose that the set of units may be further partitioned into subsets, in such a way that the units are exchangeable within subsets, while between subsets they are not. Exchangeability is used here as an intuitively clear notion, but can be given a more formal treatment in terms of similarity (Draper et al., 1993). Ideally, the partitioning forms — borrowing a phrase from Fisher (1956) — a recognizable stratification of the units. This condition implies that it is always possible to tell beforehand to which well-defined subset some designated unit belongs. Less ideally, there is merely a hypothetical stratification that still has to be verified or recognized. Whenever some stratification is an issue, the set of units is said to be heterogeneous.

Two interesting extreme cases may be noted. If there is only one subset, the units are without recognizable stratification and are completely mutually exchangeable, thus forming a homogeneous distribution. If there are N subsets, all units are recognizable and not exchangeable, and therefore they no longer constitute a distribution. In this case the set of units is said to be fixed.

To regard the set of variables as fixed means no more than that they serve to span the space in which the units vary. In the process of analysis, the variables may be transformed, represented in some other space, deemed to be non-discriminating, and so on, but they never disappear as recognizable elements. The combination of a fixed set of units and a fixed set of variables brings us to the upper-left box in Table 1. Methods operating under these premises aim at data display and

| Insert Table 1 about here |

data approximation. Usually, the units and variables are represented in a way that enhances accessibility by visual inspection, and enables recognition of special features or structural patterns. A
good example is Tucker’s vector model (Tucker, 1960), which is a precursor of the biplot technique (Gabriel, this book). Another, perhaps less obvious example is Procrustes analysis of two sets of variables (Green, 1952), which can be generalized to K sets of variables (Gower, 1975). In Procrustes analysis, the variables are linearly transformed in each set, but not reduced. The K sets define K locations for each unit, which are superimposed, and the set-wise linear transformations are chosen in such a way that the K locations after transformation approximately coincide. Thus Procrustes analysis is a matching technique, in which both units and variables remain intact, and the only stochastic elements – like in the biplot – are the residuals, or approximation errors. Part II of this chapter will discuss some recent developments in this area.

Remaining at the left side of Table 1, now suppose that the set of units is assumed to be homogeneous. In the case of a sample, this situation is more commonly characterized by saying that it is assumed that there are N independent identically distributed vector-valued stochastic variables $\{X_1, \ldots, X_j, \ldots, X_N\}$. Much of multivariate distribution theory starts here. Loglinear modelling (Bishop et al., 1975) also belongs to this group, because it analyses an m-dimensional contingency table, which is scrutinized for patterns of proportionality in each of the edges and faces of the table, without ever reducing its dimensions. We have little to add to the extensive literature in this area, except to remark that it is often possible and useful to define what is to be called "data" at a higher aggregation level. This switch of perspective involves first reducing the raw data (coded observations) to a table of sufficient statistics under some very general type of distribution, such as the multinormal or the multinomial, and then treating these sufficient statistics (e.g. in the form of a correlation matrix or a set of bivariate contingency tables) by the methods in the previous box.

In making the step from univariate to bivariate or multivariate, it is not always realized that one steps into a space with more empty spots than data points, and that the data points really are not free to move anywhere outside local regions. The methods in the lower-left box of Table 1 are geared to empty spots and uneven spread of data points. Certainly in the social and biological sciences, many research paradigms entail an assumption of heterogeneity of the set of units or populations (Gittins et al., 1987). Although heterogeneity of variance has its place, and differential skewness is sometimes observed, the focus on subpopulations most often tries to spot heterogeneity in location. When the
subpopulations can be identified by some \textit{a priori} rule, the question of whether they are also \textit{recognizable} in the multivariate data is answered by classical discriminant analysis (Hand, 1981). When heterogeneity (and limited exchangeability) is merely assumed in a general fashion, we aim for identification by some \textit{a posteriori} rule, and enter the area of cluster analysis and classification (for a recent overview, see Bock, 1988). Interesting recent work centers around the \textit{mixture model} formulation of classification tasks, and this approach will be among the new developments to be discussed in Part III.

Turning to the right column of Table 1, the term \textit{stochastic set of variables} needs some further explication. It is simply the name proposed here for a concept that is very familiar in psychometrics and econometrics (and perhaps outside these fields as well), but which unfortunately has been linked rather too closely to sampling considerations in homogeneous sets of units. The concept is to regard any particular variable in a given set of variables as a single random element from a distribution. Being a random element of a distribution implies that there is a definite operational sense in which the variables are exchangeable among themselves.

A clear example from psychometrics is the situation in which a group of students constitutes the set of units, and a collection of test items constitutes the set of variables. The leading idea is to select the test items as a random sample from all conceivable diagnostic test problems in some domain of cognitive achievement, and the prototypical psychometric mission is to reduce the item-wise responses to a single indication of relative achievement: the test score. Another example is to use the cost of several typical wage-earner purchases of goods and services in a given economy to obtain a single consumer price index, which can be traced in time or across economies. Generally, the aim is to reduce a stochastic set of variables to one or a few \textit{factors}, also called \textit{components}. Given the component(s), there remains only unidentifiable, random variation – however, not necessarily \textit{small} variation. A stochastic set of variables can be homogeneous (one component) or heterogeneous (more components), but this level of detail is avoided in Table 1.

Note that the variables themselves can be fixed or stochastic, which in the present scheme is expressed by calling the set of units fixed or stochastic. In the above example of achievement testing, the group of students should be regarded fixed when individual decisions about them are required, as
in entrance examinations. As indicated in the upper-right box of Table 1, this situation is typical for psychometric test theory (Lord and Novick, 1968), practical use of classical factor analysis (Horst, 1965), and for exploratory methods such as projection pursuit (Friedman and Tukey, 1974; Huber, 1985). In the latter method, the aim is to reduce the variables to components that strike a balance between being (1) representative for the variance in all variables, (2) insensitive to outlying units, and (3) responsive to some structural feature in the set of units, like clumpiness. These requirements all involve distributional aspects of the set of units, but there is no explicit objective to reduce this set to its distributional characterization. However, in contrast with the data display methods neighbouring at the left, individual variables are of no concern, neither in terms of approximating the initial data, nor in terms of predicting the profile of new units.

If the units are regarded as exchangeable elements, we arrive in the next box in Table 1. The oldest example is the Spearman hierarchy (Spearman, 1904), in which the whole data matrix is summarized in terms of one quantity, the mean squared correlation of the variables with a single common factor. In the Spearman hierarchy, the variables are ordered according to their correlation with the common factor, conditionally upon which they are uncorrelated. Other examples are generally subsumed under the name linear structural relations (LISREL) modelling (Jöreskog and Wold, 1982), in which several components are in turn linked by a so-called path model, but it should be noted that the LISREL family, even though it most typically belongs here, also includes methods that are to be classified in the neighbouring cells of Table 1.

The lower-right box in Table 1, finally, contains methods – to be discussed in Part I – that combine the idea of variable reduction with the concept of potential heterogeneity in the set of units, actively working with information on recognizable subpopulations. The central technique in this area is, since the seminal paper by Hotelling (1936), canonical correlation analysis, which looks for one or more components with optimal predictability from some other set of variables. These components are called canonical, because they remain the same regardless of any preliminary linear combination of the analysis variables that one might contemplate. Like in the other Parts of this chapter, the focus in Part I will be on nonlinear methods, in particular on methods that make nonlinear regressions linear; they are organized in a hierarchy called the Gift system.
Part I. Homogeneity analysis as a general framework for multivariate analysis of categorical data: the Gifi system

The *Gifi system* (Gifi, 1990) is a framework of nonlinear multivariate analysis methods that is built around the central theme of homogeneity of variables. Although variable reduction and transformation are central concepts, in view of the ambitious scope of the system it takes quite a lot of other ideas to get the whole framework together. Moreover, there are at least three major ways of introduction to the Gifi system:

1. by generalizing principal components analysis as a *differential weighting technique* – an approach based upon Guttman (1941) and De Leeuw (1973), where the differential weighting idea goes back to Galton, Pearson and Spearman (*cf.* Gifi, 1990, chapter 3), and classical psychometrics (*cf.* Heiser and Meulman, 1993));

2. as *principal coordinates analysis* (classical MDS) of χ-squared distances (which relates it to the French school, e.g. Lebart *et al.*, 1984; *cf.* Heiser and Meulman, 1983, and Meulman, 1986);

3. in terms of linearizing the regression through quantification and transformation of categorical variables (De Leeuw, 1989; the approach goes back to Hirshfeld, 1935, and Fisher, 1938, 1940).

There are still other ways of introduction, such as through the unfolding model (Heiser, 1981), but to obtain some reduction of conceptual complexity, we will concentrate upon (3) here. The Gifi system has been built to analyze dependencies in categorical data, and therefore the first problem is how to characterize the relationship between two categorical variables when they are not independent.

Linearizing the regression of two categorical variables

Consider the case of two categorical variables, h_1 and h_2, with joint distribution $F(h_1,h_2)$, where h_1 has k_1 levels or *categories*, and h_2 has k_2 categories. An example from political voting in the Netherlands is given in Figure 1, in which the joint frequencies are plotted at a regularly spaced grid,
defined by some a priori ordering of the variables POLITICAL PARTY and URBANIZATION (source: CBS (1987) records of the 1986 elections; the figures are given in thousands). Since we are not interested in the univariate marginals at this point, these are omitted from Figure 1; instead, the labels of the categories are given. The labels for the variable URBANIZATION are self-evident. For POLITICAL PARTY, several parties have been taken together at the extreme right and the extreme left of the Dutch political spectrum, respectively; PvdA is the Dutch Labour party; CDA is the name of the Christian-Democrats; there are two kinds of liberal party in the Netherlands: both emphasize civilian rights and individual freedom, but one is economically conservative (VVD), while the other is economically undogmatic (D'66). Dutch politics will return in other examples of this chapter.

The regression of POLITICAL PARTY upon URBANIZATION is also displayed in Figure 1, as a series of connected weighted means. Without further restricting specifications, the regression of a discrete variable h_1 with integer levels $1, \ldots, k_1$ upon a similar variable h_2 is nothing more than the set of conditional expectations $E(h_1 | h_2 = a)$, where $a = 1, \ldots, k_2$. Figure 1 illustrates the general phenomenon that the unconstrained regression is nonlinear for the a priori chosen value of the categories of h_1 and h_2. The same thing is true, of course, for the unconstrained regression of h_2 on h_1 (not shown in Figure 1).

By choosing another quantification for the categories of the variable POLITICAL PARTY we can get more heterogeneity (variation in the means) in the vertical direction. Suppose a different quantification is selected by permuting the initial one. The mean and the variance of the variable remain the same when the integer category values are merely permuted, but the conditional means may be affected by such an operation, because they depend on the strength of the relationship in the joint distribution $F(h_1, h_2)$. Figure 2 shows the permutation of the political parties that gives maximal heterogeneity of the conditional expectations in the vertical direction. In addition, it shows that the relationship can be made monotonically increasing too (the horizontal variable need not be changed to achieve monotonicity in this example, but generally both axes may have to be adjusted). By some well-chosen (monotonic) transformation of the variable URBANIZATION, while keeping its mean and
variance constant, the line connecting the conditional means – the regression line – could be made exactly straight. By further readjustment of the variable POLITICAL PARTY the other regression line can be made straight too, and this joint iterative process is called (reciprocally) linearizing the regression.

When the cross-classification is not independent (in the voting example, the normalized sum of squared deviations from independence (Cramér's statistic) is 0.097 – an indication for a modest interdependence in the voting population), and when it is really the only thing known about the units, linearization has a number of clear advantages. Reciprocal linearized regression leads to a characterization in terms of the Pearson correlation coefficient (Hirschfeld, 1935); the scores will give maximal mutual discrimination (Fisher, 1940); optimal scaling (Bock, 1960) of the categories removes the arbitrariness of the a priori quantification; and finally, as will be shown shortly, there is a dual relation between the scale position of the categories of h_1 and the categories of h_2 – hence the alternative name dual scaling (Nishisato, 1980). Instead of nonlinear regression between the variables, we obtain a simple relationship and nonlinear transformations of the initial scores.

Loss function for reciprocal linearization of the regression

The goal of reciprocal linearization, i.e. simultaneously linearizing the regression of h_1 on h_2, and of h_2 on h_1 can be formulated by defining the quantified variables q_1 and q_2, two unknown N-element vectors, in terms of the category quantifications y_1 and y_2, two unknown vectors of length k_1 and k_2, by the equations

$$q_1 = G_1y_1,$$
$$q_2 = G_2y_2,$$

where G_1 and G_2 are binary indicator matrices, of size $N \times k_1$ and $N \times k_2$, respectively, which code for each unit (or object) its presence (1) or absence (0) in the categories of h_1 and h_2. It is assumed that the classifications are exhaustive and mutually exclusive, so that the indicator matrices have row sums equal to 1, an N-element vector of ones, and diagonal cross product matrices $D_1 = G_1'G_1$ and $D_2 = G_2'G_2$. Since linear regression preserves the mean, we are free to choose the origin of the quantified variables so that $1'q_1 = 0$ and $1'q_2 = 0$, i.e. they are centered at zero. The scale is fixed by requiring
\(y_1^T D_1 y_1 = N \) and \(y_2^T D_2 y_2 = N \), so that \(q_1 \) and \(q_2 \) are in standard scores. Under these centering and standardization conditions, minimization of the loss function

\[
\delta^2(y_1, y_2) = \| G_1 y_1 - G_2 y_2 \|^2,
\]

(1)

where \(\| \cdot \| \) denotes the Euclidean norm, yields a reciprocal linear regression. To understand more fully why this property holds, let us first note that \(\delta^2(\cdot) \) can be alternatively expressed as

\[
\delta^2(y_1, y_2) = 2N \left[1 - \rho(G_1 y_1, G_2 y_2) \right].
\]

(2)

Here \(\rho(\cdot) \) is the canonical correlation function, which generally measures the strength of the relationship between linear combinations of two sets of variables – in this case the orthogonal binary ("dummy") variables in \(G_1 \) and \(G_2 \). While \(\delta^2(\cdot) \) in (1) is a squared distance loss function, the problem thus turns out to be equivalent to maximizing a correlation in (2), i.e. to minimizing an angle between the two standardized vectors \(q_1 \) and \(q_2 \).

The indicator matrices \(G_1 \) and \(G_2 \) are formally equivalent to design matrices of a one-way analysis of variance, and the loss function \(\delta^2(\cdot) \) can be decomposed in the usual way as

\[
\delta^2(y_1, y_2) = \| G_1 y_1 - G_2 D_2^{-1} G_2^T G_1 y_1 \|^2 + \| \tilde{y}_2 - y_2 \|^2_{D_2},
\]

(3)

where \(\tilde{y}_2 \) is the unconstrained minimizer defined as \(\tilde{y}_2 = D_2^{-1} G_2^T G_1 y_1 \), and where \(\| \cdot \|^2_{D_2} \) denotes the squared Euclidean norm in the metric \(D_2 \). Similarly, we have

\[
\delta^2(y_1, y_2) = \| G_2 y_2 - G_1 D_1^{-1} G_1^T G_2 y_2 \|^2 + \| \tilde{y}_1 - y_1 \|^2_{D_1},
\]

(4)

with \(\tilde{y}_1 = D_1^{-1} G_1^T G_2 y_2 \). The second terms on the right-hand side of (3) and (4) are simple least distance functions in the diagonal metrics \(D_2 \) and \(D_1 \), and these are the only terms to be considered for the constrained optimization of \(y_2 \) and \(y_1 \), respectively. By elementary arguments it follows that the standardized category quantifications \(\hat{\gamma}_1 \) must be proportional to the unconstrained quantifications \(\tilde{y}_1 \), with proportionality factor \(\rho(G_1 \tilde{y}_1, G_2 \tilde{y}_2) \); thus we obtain \(\hat{\gamma}_1 = \tilde{y}_1 / \rho(G_1 \tilde{y}_1, G_2 \tilde{y}_2) \), and analogously \(\hat{\gamma}_2 = \tilde{y}_2 / \rho(G_1 \tilde{y}_1, G_2 \tilde{y}_2) \) for the second variable. Suppose the quantifications of the second variable \(h_2 \) are fixed at some values \(y_2 \); then the conditional expectation of \(h_2 \) as a function of
the optimally scaled values of the first variable can be expressed as

$$E(h_2 | \hat{y}_1) = D_1^{-1}G_1'G_2y_2 = \tilde{y}_1 = \rho(G_1\hat{y}_1, q_2) \hat{y}_1,$$ \hspace{1cm} (5)$$

showing that $E(h_2 | \hat{y}_1)$ is proportional to \hat{y}_1. So the regression is linear, even when h_2 is not (yet) optimally quantified. In the latter case, of course, $\rho(G_1\hat{y}_1, q_2) < \rho(G_1\hat{y}_1, G_2\hat{y}_2)$; therefore, it should be noted that criterion (2) looks not just for any regression line, but for the steepest one.

The decompositions in (3) and (4) also show how to construct an ALS (Alternating Least Squares) algorithm by alternating between finding improved estimates for y_1 given previous estimates of y_2 and finding improved estimates for y_2 given previous estimates of y_1. Due to the special structure of G_1 and G_2, the unconstrained updates \tilde{y}_1 and \tilde{y}_2 can be obtained by averaging the appropriate scores in q_2 and q_1, respectively, and for this reason the process has been called reciprocal averaging (Horst, 1936). Both averaging operations involve the contingency table $G_1'G_2$, and it can be shown that there is a close connection with the French omnibus technique correspondence analysis (Gifi, 1990, chapter 8). Inserting the definition of \tilde{y}_1 into the formula for \tilde{y}_2 (or the other way around), and keeping track of the necessary normalization, yields an expression for eigenvector calculation. In the ALS process, it is easy to handle further constraints, such as the isotonicity requirement that the category quantifications should be non-decreasing with respect to the initial quantifications, because by working with one set at a time it is enough to solve the weighted least distance problems defined in the second terms of (3) and (4).

Before proceeding to the case of m categorical variables, which brings us into the heart of the Gifi system, a remark on the number of solutions (or dimensionality) is in order. Although there generally are $\min(k_1 - 1, k_2 - 1)$ stationary points of loss function (1), there is only one pair (y_1, y_2) that minimizes it. The rationale of linearizing the regression with maximal correlation does not permit us to select more than one solution. However, if we would aim at an approximation of the bivariate distribution (Lancaster, 1957, 1958), which constitutes an alternative rationale for the same algebraic operations, then it certainly would be sensible to consider a higher dimensionality, because that would yield a higher-order approximation of a nonlinear function.
Simultaneous linearization of m categorical variables

Generally, it is not possible to extend the idea of reciprocal linearization to the case of m categorical variables, because it leads to inconsistency in the requirements that each of the variables should satisfy. However, we can try as hard as possible by generalizing (1) into the loss function

\[\delta^2(y_1,...,y_m) = \frac{1}{2m^2} \sum_j \sum_l \| G_j y_j - G_j y_l \|^2, \]

where the reason for the appearance of the factor \((1 / 2m^2)\) will become clear in a short while. First note that minimizing \(\delta^2(y_1,...,y_m)\) over \(y_j\), keeping the other variables fixed, only involves terms in (6) with \(l \neq j\), and that for the sum of these terms, Huygens' Theorem (cf. Lebart et al., 1984) gives the decomposition

\[\sum_{l \neq j} \| G_j y_j - q_l \|^2 = \sum_{l \neq j} \| q_l - \bar{q}_{(-j)} \|^2 + (m - 1) \| \bar{q}_{(-j)} - G_j y_j \|^2, \]

in which \(\bar{q}_{(-j)} = (m - 1)^{-1} \sum_{k \neq j} q_k\), the multidimensional mean (center of gravity) across all variables except \(q_j\). From the second term of this decomposition, it follows that the unconstrained minimum over \(y_j\) is obtained for \(\bar{y}_j = D_j^{-1} G_j \bar{q}_{(-j)}\). If we now look at the conditional expectation of any variable \(h_l\) as a function of the optimally scaled values of \(y_j\), the analogon to (5) is

\[E(h_l | \bar{y}_j) = D_j^{-1} G_j G_j y_j = D_j^{-1} G_j \bar{q}_{(-j)} = \bar{y}_j, \]

showing that \(E(h_l | \bar{y}_j)\) is not proportional to \(\bar{y}_j\), except when \(q_l\) happens to coincide with the leave-one-out center of gravity \(\bar{q}_{(-j)}\). So the regression remains nonlinear, even when all variables would be optimally quantified by finding the global minimum of \(\delta^2(y_1,...,y_m)\).

Fortunately, there still is a way to keep linearization possible: by introducing a new variable \(x\), quantified as an unknown \(N\)-vector \(x\) in the space spanned by the \(\{q_j\}\), which does have linear regressions with all variables. Using the well-known equality of the sum of squared Euclidean distances among pairs of vectors, used in (6), and \(2m\) times their sum of squared Euclidean distance towards the center of gravity (cf. Gower, 1975), in fact another application of Huygens' Theorem, we obtain
\[\delta^2(y_1, \ldots, y_m) = \min_x \sigma^2(y_1, \ldots, y_m; x) = m^{-1} \sum_j \| G_j y_j - x \|^2 . \] (7)

While the function \(\delta^2(\cdot) \) aims at reciprocal linearization (but cannot achieve it), the function \(\sigma^2(\cdot) \), which is the basic loss function of the Gifi system, called *loss of homogeneity*, aims at simultaneous linearization with respect to \(x \). Since \(\sigma^2(\cdot) \) measures the *mean squared deviation* from some central vector, it is a natural measure of multidimensional dispersion, and the fact that the sum of squared inter-variable distances is \(2m \) times the sum of squared deviations from their center of gravity explains the appearance of the factor \((1 / 2m^2)\) in (6).

The transition from \(\delta^2(\cdot) \) to \(\sigma^2(\cdot) \) is illustrated in Figure 3, where at the left the inter-variable distances are indicated with white lines, while at the right the variables are all connected with their

Insert Figure 3 about here

center \(x \). Using the same arguments as before, the *unconstrained* optimal value of \(\sigma^2(\cdot) \) over \(x \) is the mean across all variables: \(\bar{x} = m^{-1} \sum_j G_j y_j \). But because the only interest is in its direction, not in its length, \(x \) is required to have some standard length, usually \(\| x \|^2 = N \), leading to \(\hat{x} = N^{1/2} \bar{x} / \| \bar{x} \| \) as the standardized solution. Normalizing \(x \) allows us to leave the quantifications \(y_j \) unnormalized. Similarly, partial minimization of \(\sigma^2(\cdot) \) over \(y_j \) yields the relationship \(\rho(G_j \hat{y}_j, x) \hat{y}_j = D_j^{-1} G_j x = \bar{y}_j \) between the standardized and the unconstrained optimal quantifications, respectively, where \(\rho(G_j \hat{y}_j, x) \) now is the *multiple correlation* function, called the *component loading* of the optimally quantified \(q_j \) on the *component* \(x \). Let us once more have a look at the conditional expectation, this time of \(x \) with respect to the optimal \(\hat{y}_j \), obtaining

\[E(x | \hat{y}_j) = D_j^{-1} G_j x = \rho(G_j \hat{y}_j, x) \hat{y}_j , \]

a linear regression line of the component on any of the quantified variables, with slope equal to the component loading, demonstrating the correctness of the claim that simultaneous linearization is possible, even though reciprocal linearization is not. Insertion of the expression for \(\bar{y}_j \) into loss of homogeneity leads to the conclusion that the mean squared component loading is maximized, and therefore the slopes of the linearized regressions will be as steep as possible, on average.
As before, simple linear relationships with the component are obtained by a process that is independent of the initially given quantifications of the variables, which makes the analysis invariant under preliminary nonlinear transformations that preserve class membership. The introduction of x is not just a matter of computational convenience, because it is crucial for extending the linearization concept to the case of m variables. When a new object would become available, of which the class membership on h_j is given, we could use all cross-tabulations with h_j to predict its class membership on the other variables, but that would in fact involve a highly parametrized model of prediction. Analysis methods based on linearization allow us to predict the mean of a subdistribution in x, which is the appropriate element of \bar{y}_j, and to estimate the pooled within-class variance by $1 - N^{-1}\bar{y}_j \cdot D_j \bar{y}_j$, i.e. one minus a diagnostic called the *discrimination measure*. Given that information, simple rules for predicting the class membership in the other variables can be constructed.

Homogeneity analysis in a strict sense: HOMALS

Minimization of the homogeneity loss function $\sigma^2(\cdot)$ implies seeking maximum homogeneity of variables and maximum heterogeneity of units. When there are only two variables, identification of a single component with its associated optimal scaling of the categories finishes the analysis, because – as explained earlier – there is no way to improve the quantification. But with more variables, there may be reasons to repeat the analysis with multiple components. Either the mean squared loading may be low, indicating wide dispersion in several directions, or the loadings may have large variance, indicating that only a subset of the variables determines the component (note that, with two variables, the loadings will always be equal, as the component will be exactly in between the two quantified variables). These properties of the loadings are indications that the variables are not homogeneous, but heterogeneous or partially independent.

Without too much complication, it is possible to extend the analysis into a multicomponental one, by generalizing loss of homogeneity into

$$\sigma^2(Y_1,\ldots,Y_m; X) = m^{-1} \sum_j \| G_j Y_j - X \|^2,$$

(8)

with p uncorrelated components x, collected in an $N \times p$ matrix X, satisfying $X'X = \mathbf{I}$; the Y_j are now matrices of order $k_j \times p$. Minimizing (8) without further qualifications constitutes homogeneity
analysis in a strict sense, and can be executed with the computer program HOMALS (SPSS, 1990). The multiple components each have different linear regressions on each of the variables, collected in the columns of the Y_j, which are called multiple quantifications. It can be shown that homogeneity analysis in a strict sense is equivalent to an extension of correspondence analysis, called multiple correspondence analysis, but the definition, representation and interpretation of the distances among units and variables that are typical for this framework become problematical in its extension (Meulman, 1986; Greenacre, 1991).

By contrast, the primary focus in the Gifi framework as presented here is on quantification and discrimination. In the multiple case these concepts are associated, like in linear discriminant analysis, with variable-wise distances among category points (rows of Y_j), and with unit-category distances between category points and object points (rows of X). The weighted average sum of squares of the former is maximized, whereas the average of the latter is minimized (Heiser, 1981). The difference with discriminant analysis is that HOMALS uses multiple classifications rather than a single one, and the part of the covariates is played by X, the unknown components, which in turn are linear combinations of the quantified classifications.

The scope for application of HOMALS is quite large, and since several computer implementations have been made widely available, the technique is used increasingly, sometimes even routinely, in many areas (for examples, see Nishisato, 1980, Lebart et al. 1984, Greenacre, 1984, Gifi, 1990).

Homogeneity analysis of variables with a priori ordered or integer-valued categories: PRINCALS

It often happens that one has a mixed collection of variables, some of which are unconstrained categorical (called nominal variables), some defined by a priori ordered categories (ordinal) and others having an equally spaced succession of levels (numerical). To incorporate this additional information, it is possible to switch from unconstrained, multiple quantification to constrained, single quantification (De Leeuw and Van Rijckevorsel, 1980). Loss of homogeneity can still be an average sum of squares across variables, as in (7) and (8), but now with variable-wise components defined as

$$
\sigma^2(y_j,a_j \mid X) = \| G_{yja'_j} X \|^2 ,
$$

(9)

where the notation $\sigma^2(\cdot \mid X)$ is used to indicate that X is temporarily regarded as fixed, and where
the p-vector $\mathbf{a}_j = \{a_{1j}, ..., a_{js}, ..., a_{js}\}$ contains the regression coefficients for the regression of the components \mathbf{x}_s on the standardized quantified variable $\mathbf{q}_j = G_j \mathbf{y}_j$. Optimizing $\sigma^2(y_j, a_{j} | X)$ over \mathbf{a}_j yields, instead of a single loading per variable, the multiple components loadings $a_{js} = \rho(G_j y_j, x_s)$, so the major new problem is how to obtain conditionally optimal estimates of \mathbf{y}_j. Application of Huygens’ Theorem on the rescaled components \mathbf{x}_s / a_{js} leads to the basic decomposition

$$\sigma^2(y_j | X, a_{j}) = \sum_s a_{js}^2 \| G_j y_j - x_s / a_{js} \|^2 = \sum_s a_{js} \| \tilde{\mathbf{q}}_j - x_s \|^2 + \left[\sum_s a_{js}^2 \right] \| \mathbf{q}_j - G_j y_j \|^2. \quad (10)$$

Here the notation $\tilde{\mathbf{q}}_j$ is used to denote the component mixture variable

$$\tilde{\mathbf{q}}_j = \sum_t a_{jt} x_t / \left[\sum_t a_{jt}^2 \right],$$

which is the optimal representation of variable h_j in the space of the components. Since only the second part of decomposition (10) depends on \mathbf{y}_j, it may be concluded that the mixture variable $\tilde{\mathbf{q}}_j$, instead of the components itself, will have a linear regression on the optimal quantifications. For nominal variables, the optimal \mathbf{y}_j are the category means of the mixture variable. For ordinal variables, we have to perform an isotonic regression (Barlow et al., 1972) of $\tilde{\mathbf{q}}_j$ on the given ordering of the categories during the ALS iterations. This process may create ties in \mathbf{y}_j, leading to a flat part in the transformation of the original category values, but will leave the conditional expectation of $\tilde{\mathbf{q}}_j$ linear. For numerical variables — which in the Gifi system always are variables with integer-valued categories $\{1, 2, 3, ..., k_j\}$, some of which may be missing — the vector \mathbf{y}_j has to be chosen as the appropriately centered and standardized version of the sequence $\{1, 2, 3, ..., k_j\}$, and there are no degrees of freedom left to optimize.

Note that, since a_{js} is a function of \mathbf{y}_j, and $\tilde{\mathbf{q}}_j$ is a function of a_{js} and \mathbf{x}_s, while X is a function of the mean across $G_j y_j$, the real complexity of the loss function is much greater than the succession of quadratic problems that has been obtained by the convenient way the problem can be split into separate parameter sets. The computer program PRINCALS (Gifi, 1985; SPSS, 1990) can be used for these iterative computations. The reader is referred to Vlek and Stallen (1981) and Kerkhof et al. (1988) for examples of the method in action.
Linearization of cross classification variables and additivity

The approach as described so far would seem to be limited to a joint analysis of bivariate relationships, but this limitation is easily removed by the introduction of other analysis variables than the ones that correspond directly to empirical measurements. One categorical variable corresponds to a partitioning of a set of units, but the cross product of two categorical variables also corresponds to a partitioning, called a cross classification, which is a refinement of both initial partitionings. Thus, more generally, if there is interest in the higher-order effects, the cells of a two-dimensional or higher-dimensional contingency table could be coded as the categories of an indicator matrix \(G_k \), with total number of categories \(k_1 \times \ldots \times k_{m_k} \), where \(m_k \) is the number of initial variables involved.

Homogeneity analysis of such cross classification variables – in conjunction with other, single classifications or not – can be carried through without further technical complications, and is often worth considering, especially when the original partitionings are extremely coarse (e.g., the binary variable "gender"), or when some variables are strongly associated for reasons not of interest to the current study (e.g., the variables "number of adults in household" and "number of children in household" in a study of consumer expenditure).

Because a cross classification variable can easily get too many categories, and because the linearization of the regression is not in terms of the original variables, it may be desirable to add restrictions to the quantification process. Some more notation needs to be introduced for this extension. Suppose \(S_k \) is a partitioned binary matrix with \(k_1 \times \ldots \times k_{m_k} \) rows corresponding to the cells of the multidimensional contingency table, i.e., to the columns of the cross classification indicator matrix \(G_k \), and with \(k_1 + \ldots + k_{m_k} \) columns corresponding to the categories of the original variables. The matrix \(S_k \) (formally equivalent to the design matrix of a \(k_1 \times \ldots \times k_{m_k} \) factorial design with one replication per cell) codes which category of each variable is involved in each cell of the contingency table. Furthermore, suppose \(G^k \) denotes the partitioned indicator matrix, consisting of \(m_k \) column-wise concatenated simple indicator matrices, which code for each unit its membership of any category of each of the variables, and let \(y^k \) be the conformably partitioned \((k_1 + \ldots + k_{m_k}) \)-vector of quantifications. From these definitions it easily follows that \(G_k \ S_k = G^k \).

Let us now consider one component of loss of homogeneity (7) associated with a cross
classification variable \(q_k = G_k y_k \). Thinking of the earlier example of POLITICAL PARTY crossed with URBANIZATION, the data set could include a number of opinion variables to be summarized – in conjunction with the cross classification – in the component \(x \). Then the regression line of \(x \) as a function of \(y_k \) would be straight, as always, whereas the regression surface of \(x \) as a function of the grid points formed by all pairs of categories of POLITICAL PARTY and URBANIZATION would generally still be nonlinear. The natural constraint on \(y_k \) therefore is to require that it linearizes the regression surface too.

In the example, let the two submatrices of \(S_k \) be \(S_P \) and \(S_U \), the submatrices of \(G_k \) be \(G_P \) and \(G_U \), and the subvectors of \(y_k \) be \(y_P \) and \(y_U \). Then the grid points formed by all pairs of categories can be collected in the matrix \([S_P y_P, S_U y_U]\), and the conditional expectation of \(x \) would form a linear regression surface if there would exist an \(y_P \) and \(y_U \) so that

\[
E(x \mid [S_P y_P, S_U y_U]) = D_k^{-1} G_k' x = S_P y_P + S_U y_U .
\] (11)

The equations in (11) hold if the unconstrained minimizer \(\tilde{y}_k = D_k^{-1} G_k' x \) satisfies \(\tilde{y}_k = S_k y^k = S_P y_P + S_U y_U \), a condition that cannot be expected to be true in general. But a method that imposes the restrictions \(y_k = S_k y^k \) will pull the component \(x \) as much as possible to the subspace of vectors satisfying the constraints, so that the conditional expectations will be close to a linear surface. If \(y_k = S_k y^k \), then \(G_k y_k = G_k S_k y^k \), and because \(G_k S_k = G_k \), we obtain (Gifi, 1990, section 5.3)

\[
G_k y_k = G^k y^k = \sum_{j \in J_k} G_{j} y_{j} ,
\] (12)

where the submatrices of \(G^k \) and the subvectors of \(y^k \) are now indexed with \(j \in J_k \), an index set of variable identifications. Thus the constraints in (12) require the quantifications of the cross classification variable to be additive with respect to the quantifications of the original variables.

Loss functions for getting the regression as additive as possible

The additivity constraints described in the previous section can be incorporated in a loss function in various ways, depending upon the further characteristics of the analysis problem. Probably the first one to consider optimal scaling under additivity constraints was Fisher (1938, section 49.2)), who – under the heading "The Discrimination of Groups by Means of Multiple Measurements; Appropriate
Scores"—treated the case of non-numerical serological readings, with categories \{-, ?, w, (+), +\}, characterizing the reaction in twelve samples of human blood tested with twelve different sera. Fisher's additive scoring system minimizes the loss function

\[
\varepsilon^2(y_R; y_j, j \in J_k) = \| G_R y_R - \sum_{j \in J_k} G_j y_j \|^2,
\]

which is equal to (1) with the first variable as the response variable \(q_R = G_R y_R\), and with additivity constraints on the second variable. The relationship of (13) with multiple correspondence analysis of the concatenated table \([G_R, G_1, G_2]\) is discussed in detail by Gower (1990). Fisher (1938) solved an eigenvalue equation to minimize (13), but Kruskal (1965) showed how to construct an algorithm with iterative estimate improvement and optimal scaling steps, including the possibility for monotonicity constraints on \(y_R\), calling the method MONANOVA. Then De Leeuw et al. (1976) and Young et al. (1976) gave a full ALS method for minimizing (13) with possibilities for constraining the quantifications \(y_j\) with \(j \in J_k\), in methods called ADDALS and MORALS. Probably the most active application area of these methods is marketing research, where they were introduced by Green (1973, 1974) and Green and Srinivasan (1978) under the name (additive) conjoint analysis; for state-of-the-art reviews, see Wittink and Cattin (1989), Green and Srinivasan (1990), and Van der Lans (1992).

The next step could be to introduce additivity at the side of the response variable too. In the one-componental case this extension is without complications, but some intricate difficulties arise as soon as one tries to fit more components, optimizing, by combination of (9) and (13).

\[
\varepsilon^2(y_j, a_j; j \in J_1 \cup J_2) = \| \sum_{j \in J_1} G_j y_j a_j - \sum_{j \in J_2} G_j y_j a_j' \|^2,
\]

which is the generalization of (1) with additivity constraints on both sides and multiple components, but single quantifications. The difficulties have to do with the confounding of various types of constraints, and were solved by Van der Burg and De Leeuw (1983), in a method called CANALS.

Homogeneity analysis comes in when we switch to more than two sets of variables, be it of the cross classification type with additivity restrictions, or ordinary ones. Suppose there are \(M\) sets, indexed by \(k\), each with \(m_k\) edge variables, indexed by \(j \in I_k\). The variables within sets are called edge variables here, because they form the edges of a \(m_k\)-dimensional hypercube, with respect to which
the regression of the others is to be linearized. If $m_k = 2$, the hypercube is a grid, and if $m_k = 1$ there is only one edge: a set of points on a line. With $M > 2$, we can make the same transition from the reciprocal $\delta^2(\cdot)$ function to the simultaneous $\sigma^2(\cdot)$ function with several central components X as was done for simple homogeneity analysis. Less function (8) with additivity constraints becomes

$$\sigma^2(Y_1, \ldots, Y_m; X) = M^{-1} \sum_k \| \sum_{j \in I_k} G_j Y_j - X \|^2,$$

(15)

with p uncorrelated components x_k, collected in an $N \times p$ matrix X, satisfying $XX = M$; there now are $m = \sum_k m_k$ Y_j-matrices of order kJx. Van der Burg et al. (1988) proposed an ALS algorithm for minimizing (15) with edge variables of the nominal, ordinal, or integer-valued type, and this method has been implemented — including a provision for missing data — in the computer program OVERALS (SPSS, 1990).

If single quantification is used for all variables, so that the additional rank-one condition $Y_j = y_j a_j^T$ holds, as in PRINCALS, the OVERALS loss function can be written as

$$\sigma^2(Q; A; X) = M^{-1} \sum_k \| \sum_{j \in J_k} q_j a_j - X \|^2 = M^{-1} \sum_k \| Q_k A_k - X \|^2,$$

with $q_j = G_j Y_j$, collected in the matrix of quantified edge variables Q_k, which in turn are collected in the partitioned matrix Q, and with A_k the conformable matrices of regression weights, collected in A. This reparameterization shows that we deal with a nonlinear generalization (in the sense of optimal scaling) of generalized canonical correlation analysis, as proposed by Horst (1961a,b) and Carroll (1968), which is one of the possible generalizations of Hotelling's (1936) two-sets canonical correlation analysis (Gitlin, 1990, section 5.1), and which is the reason that the variables defined in (12) are called canonical variables.

It is important to notice that the optimal scaling in OVERALS does not linearize the regression of the components in X, but of the auxiliary matrix

$$U_j = X - \sum_{l \neq j} G_l Y_l,$$

which corrects X for the quantifications of the other variables. Thus additivity enables us to unravel the separate contributions of the edge variables to the effect of the finest possible distinction in
subpopulations, as provided by a full cross classification, but the interpretation of the category quantifications as centers of gravity of subsets of object scores X no longer holds.

Summarizing, OVERALS is the most general technique of the Gifi system. As a method of dimension reduction, it contains no notion of reducing the edge variables; it is the number of sets that is reduced into a number of components, which in turn can be linearly predicted by the edge variables. When there is only one variable in each set, we obtain PRINCALS. When each variable in PRINCALS is treated as multiple nominal, we obtain HOMALS. When there are only two variables in HOMALS, we obtain ANACOR, the Gifi version of correspondence analysis (SPSS, 1990).

Application of OVERALS to Demographic, Quality of Life, and Educational variables for the US, illustrating the possibility of multidimensional solutions to multiple regression problems

When we have one set with a number of predictor variables, and another one with only a single criterion variable, we are in the multiple regression situation. In that case, only optimization over one component is sensible, even though technically more components could be calculated (Meulman and Heiser, 1988). But now suppose that we can distinguish the predictor variables into two groups, within each of which additive effects would be reasonable. Then we have a three-sets analysis in OVERALS, and subsequent components are no longer arbitrary. Thus in that situation we can look at a meaningful two- or mere-dimensional space, inspect distances between object points, and investigate the relationship between the predictors and the criterion via the component loadings.

This idea is illustrated with an example of social indicator data characterizing the 50 states of the United States, in terms of 10 demographic, quality of life, and educational variables, partitioned into 3 sets (sources indicated in Table 2). Several other nonlinear analyses of these (or similar) data have been reported elsewhere (Meulman, 1986). The definition of the variables, and their partitioning into

\[
\text{Insert Table 2 about here}
\]

three sets can also be found in Table 2. The OVERALS analysis was done on the rank numbers, with single ordinal quantification for all variables, to allow for nonlinear transformations that preserve the order of the categories. The homogeneity per component can be expressed as an eigenvalue, and is equal to the mean squared correlation of the canonical variables with the component, while the fit per
variable can be expressed as the square root of the sum of squared correlations of the transformed variable across components (which is equal to the correlation between the transformed variable and its projection into the component space (see Table 3)). The eigenvalues associated with the components for a two-dimensional analysis turn out to be .98 and .65, respectively. A convenient way to inspect the solution is by plotting the object points (rows of X), and then adding the edge variables by projection into the component space (Figure 4; the length of the projected edge variables is proportional to their fit). The 50 states are located in such a way that the variables SCHOOL, LIFE, ILLIT, and FAIL are very well represented by the components (variables with the highest fit values in Table 3). By contrast, the variables UNEMP, and TEACH fit rather badly into the canonical space. Mississippi, South Carolina, and some other southern states don't do well, while it must be better to live in North Dakota, Nebraska, or Wyoming. Since the variable FAIL has been given a special role in the analysis, it is interesting to inspect the correlations between this variable and the other transformed variables (also see Table 3). The angles between the vectors in Figure 4 are an approximation of these correlations. It is clear with respect to test failure that ILLIT is the most positively associated variable, and that SCHOOL is the most negatively associated variable.

Figure 5 shows the monotone transformations of the variables. Here the original values are plotted on the horizontal axes, and the optimal quantifications are plotted on the vertical axis. Although the OVERALS program expects integer values as input, so that often recoding of the originally recorded values is necessary, it is advisable to return to the initial coding when plotting transformations. Also, it must be emphasized that there is no need to have a small number of categories with ordinal variables, in contrast to nominal variables where this is imperative. From the transformations in Figure 5 we learn that variables that fit badly, like TEACH and UNEMP, have obtained transformations with a few steps only. This phenomenon is often observed and implies that little is retained from the original information provided by the edge variable, because it takes aggregation of
subclasses to keep the categories monotonically increasing. SCHOOL, FAIL, INC, and LIFE, on the other hand, fit well into the component space, and their monotone functions are likewise informative.

Part II. Spatial representation and approximation of two-mode data

Data are called *two-mode*, in a terminology popularized by Carroll and Arabie (1980), if they describe the relations between a fixed set of units and a fixed set of variables (or another set of units). The term two-mode is used in contradistinction to *two-way*, which merely indicates that the data are indexed by rows and by columns. Thus a correlation matrix is two-way, but one-mode, because it describes the relationships between one set of entities, the variables.

A first-order approximation of two-mode data, which also enables us to make useful spatial representations, is provided by the *bilinear model*. Would the column parameters of this model be known variables, it is (multivariate) linear in the row parameters, whereas it is (multivariate) linear in the column parameters if the row parameters would be known variables; hence the terms *bilinear* for the model, and *biplot* for the spatial representation of the parameters. The bilinear model is in fact a family of models, because it involves products of parameters that themselves can be identified in a number of different ways, and there are several issues of standardization and weighting (Rao, 1980). Of course, the most prominent member of the family is *principal component analysis*, since Eckart and Young (1936) showed that the principal components can be used to make a nested series of bilinear approximations in the least squares sense.

Because bilinear approximation does not involve a reduction of the row or column elements, but a decomposition of the form \(\text{DATA} = \text{BILINEARITY} + \text{RESIDUAL} \), the stochastic part is in the residuals. In practice, one should always check if the residuals are reasonably homogeneous. If the data exhibit nonlinear scatter, it may be possible to *bilinearize* them by row-wise or column-wise nonlinear transformations, so that the RESIDUAL component becomes more regular. Algorithms and computer programs for this purpose, like PRINCIPALS (Young et al., 1978) and options within MULTIPALS (Verboon et al., 1991), are implementations of Kruskal and Shepard's (1974) pioneering work.

Regardless of data transformation, the residuals may still remain large or heterogeneous for bilinear representations of reasonably small dimensionality. In the following two paragraphs, we will
first have a look at robust techniques for two-mode approximation, and next discuss second-order methods that are based on a particular non-bilinear model, the unfolding model.

The Procrustes problem with heterogeneous residuals

In models like the ones considered here, with many degrees of freedom and a two-way structure of residuals, the commonplace remark that least squares lacks robustness is easier said than verified. Generating error-perturbed data by adding bimodal random deviates to a low-rank matrix is often not sufficient to disturb the first few components, and it could even be conjectured that the principal components are robust against disturbances that are unrelated to the two-way structure. It is important to note here that – unlike the situation in the linear model, where we can always inspect various conditional distributions – outliers in the residuals need not manifest themselves in the data, and neither do outliers in the data contradict a low-dimensional bilinear model. As remarked by Green (1984), the traditional correspondence of "residuals" with "observations" has been lost. Because of these complexities, the discussion will be limited to a special case, the Procrustes problem.

In the *orthogonal Procrustes* problem (Green, 1952), the set of points \(\{q_i\} \), collected in the rows of data matrix \(Q \), is approximated by rotation of another set of points \(\{p_i\} \), collected in the rows of a matrix \(P \), which may be another data matrix or some *a priori* given set of characteristics. A rotation of the coordinate axes associated with \(P \) leaves all distances among the row points unchanged, and is effected by an *orthonormal* linear transformation, i.e. multiplication by some \(mxm \) matrix \(Y \) satisfying \(YY' = Y'Y = I \). Thus the least squares Procrustes problem is to minimize

\[
\delta^2(Y) = N^{-1} \sum_i \| q_i - Yp_i \|^2
\]

(16)

over the rotation matrix \(Y \). Verboon and Heiser (1992) showed how to fit a variety of robust or resistant alternatives to the squared Euclidean norm in (16), such as Tukey's biweight function (Beaton and Tukey, 1974), with an iteratively reweighted least squares algorithm, and proved why such a procedure converges monotonically (also see Heiser *et al.*, this volume).

Approaching the Procrustes problem under the assumption of *heterogeneous residuals* implies that some points \(p_i \) have to be rotated with rather different angles to match their corresponding point \(q_i \) than others. The sensitivity of least squares to this type of heterogeneity is illustrated with an example
from Verboon and Heiser (1992). In Figure 6 two sets of eight points on a square are given,

[Insert Figure 6 about here]

Q with sides parallel to the coordinate axes, and P with sides under a 45° rotation. Thus rotation towards perfect match is possible. When only one outlier is created by changing the second coordinate of q1 so that it would require an angle of minus 84° for p1 to have the same direction, the least squares result deteriorates as indicated by the dashed square in Figure 6. With Tukey’s biweight, an angle of approximately 44° is found, creating much smaller residuals for the non-perurbed points and excessively large values for the first pair of points. In a resistant loss function excessive residuals do no harm, as they are radically downweighted.

Approximation with a two-sets distance model: the unfolding technique

The bilinear model works with two sets of points or vectors: one for the rows of the data matrix, and one for the columns. Suppose that we denote the row points by \(x_i \) and the column points by \(y_j \), both being vectors in \(p \)-dimensional space, where \(p \) is some pre-chosen parameter. According to the bilinear model, a data value \(q_{ij} \) is approximated by the inner product \(x_i'y_j \). Thus a row of Q, viewed as a function of the configuration of points \(\{y_1,...,y_j,...,y_m\} \), forms a linear response surface. In the context of individual choice behavior, Coombs (1964) argued that preference data would better be modelled by single-peaked response surfaces, and suggested the so-called unfolding model. In a relatively simple form of the unfolding model (Heiser, 1981, 1987a) it is assumed that \(q_{ij} \) is approximated as a function of the Euclidean distance \(d(x_i, y_j) = \| x_i - y_j \| \). Taking squared distances, the relation with the bilinear model is given as

\[
 d^2(x_i, y_j) = x_i'x_i + y_j'y_j - 2 x_i'y_j.
\]

This quadratic function has a minimal value at \(x_i = y_j \), which is characteristic for the unfolding model, and its curvature provides an example of "undesired" nonlinearities that cannot be linearized by the transformation methods of the Gifi system (Heiser, 1985).

A least squares fit of the two-sets distance model can be calculated iteratively by the program
SMACOF-3 (Heiser, 1981), and the type of representation obtained will be illustrated with an example of political preference data collected among Dutch Members of Parliament (MP's) in 1990 (Hillebrand and Meulman, 1992). Here the rows of the data matrix refer to 136 MP's, and will be labelled in the unfolding representation with the initial letter of their party allegiance ('g' = left wing, green party; 'p' = PvdA, social democrats; 'd' = D'66, liberal democrats; 'c' = CDA, christian democrats; 'v' = VVD, liberal-conservatives; 'k' = right-wing, calvinist parties). The columns of the data matrix refer to the four major parties PvdA, D'66, CDA, and VVD, and the MP's had indicated their "sympathy" on a response scale ranging from 0 to 100. The SMACOF-3 unfolding

representation in two dimensions is plotted in Figure 7. When one would pick up the plane at a particular party point, and fold it, the MP's would appear (approximately) in the order of their sympathy for that party – hence the name unfolding for a technique that has to reverse this process. The fitted distances account for 84% of the variance of the sympathy ratings, which is a very reasonable fit. CDA and D'66 are frequently called "center" parties, but this analysis shows that centrality is not at all reflected in the mutual sympathies in Parliament. Interpretation is aided by inspection of the issue directions that have been fitted in afterwards, by multiple regression of additional rating scale data concerning a number of political issues. One can see, for example, that the large separation between MP's from D'66 and the christian-democrats has to do with the EUTHANASIA and ABORTION issues, while the opposition between MP's from PvdA and VVD is related to more traditional concerns like the distribution of INCOME.

Summarizing, the unfolding model can be used for approximation and representation of nonlinear response surfaces of moderate complexity. Its major strength lies in the idea of having one family of functions with common shape that is shifted in location, much like the situation usually assumed in discriminant analysis (Takane, 1987). For further theoretical developments in modeling of single-peaked (or unimodal) response surfaces and applications in ecology, see Ter Braak (1987, 1988); in psychology, many unfolding models for binary data have been developed, e.g. Andrich (1988), Formann (1988), and Hoijtink (1990).
Part III. Classification of units and constrained latent class analysis

The third and final part of this chapter is concerned with methods for the analysis of heterogeneity of units. Many methods for grouping statistical units in subpopulations (types, or clusters) on the basis of multivariate data have been proposed. Rather than attempting to give an exhaustive overview of this steadily growing field, we will mention a few recent highlights and then discuss one particular approach in somewhat more detail.

When some a priori classification of units is available, we have in fact an additional categorical variable, and we could choose between a two-sets (of variables) analysis with the methods discussed in Part I, such as MORALS, CANALS and OVERALS (cf. Meulman et al., 1992), or a one-set (of variables) mixed approach, with PRINCALS. In the latter case, the influence of the additional classification variable can be increased to a definite asymptotic level by including it several times, or by explicit weighting — a procedure called forced classification (Nishisato, 1984, 1988).

Alternatively, we could apply Meulman's (1986, 1992) distance approach, which aims at a representation of the units in a low-dimensional Euclidean space by multidimensional scaling, under optimal transformation of variables. Working with least squares distance approximations, this approach, which has the same scope of application as the Gifi system, avoids the projection of points from the high-dimensional observation space into low-dimensional classification space, an operation that is characteristic for most multivariate techniques, and that is bound to diminish the interunit distances unevenly. For classification purposes, it may be necessary to reduce the full dimensionality of observation space, but to keep small distances small and large distances large in the process of allocating objects to classes. A successful case of classification analysis in this framework has been reported by Meulman (1992).

When the classification has to be done on a posteriori grounds, it may still be a good idea to use differential weighting of the variables (De Soete et al, 1985), or differential weighting and optimal quantification of variables (Van Buuren and Heiser, 1989). Many traditional clustering methods start in a fixed observation space, in which some measure of inter-unit dissimilarity is derived, and proceed from the dissimilarity matrix without ever referring back to the original data. Differential
weighting does not work with a fixed definition of dissimilarity, but iteratively downweights the influence in the dissimilarity function of variables that are detrimental to the clustering objective. Similarly, the GROUPALS method proposed by Van Buuren and Heiser (1989) is a version of PRINCALS in which the object scores X are constrained to K locations in space, under free choice of dimensionality p, where the number of groups K is some prechosen parameter larger than p (and of course smaller than N).

In recent years there has been a remarkable revival of Latent Class Analysis (LCA), a group of methods which originated in the fifties, culminating in the classic monograph of Lazarsfeld and Henry (1968). A good technical article on an application of LCA is Aitkin et al. (1981); many recent developments are covered in Langeheine and Rost (1988), and Lindsay et al. (1991). Perhaps one of the main reasons for its increased use has been that more flexible algorithms have become available than the ones used in the early days, as will also become evident in the work to be presented below.

The latent class approach to unfolding

As we have seen in Part II, the unfolding technique tries to describe the elements of a two-mode data matrix by allocating row points x_i to the units, or row objects, and column points y_j to the variables, or column objects, and then fitting a distance model. If the set of units is regarded as fixed, we need as many row points as there are units. But under the assumption of heterogeneity, it is supposed that the N units can be clustered into K homogeneous groups, so that units within each group exhibit a similar data profile that varies only randomly, while the systematic variation between groups would be described by a distance model. Then it would suffice to represent the units within the same homogeneous group by a single point, called the ideal point x_k with $k = 1, \ldots, K$.

De Soete and Heiser (1993) have developed a method that simultaneously arrives at a clustering of the units into a small number of homogeneous groups and constructs a geometrical representation based on the unfolding model where each group is represented by a single ideal point. Their approach is based on a mixture model formulation. Since independence is assumed within each component distribution (i.e., local independence holds), the model can be considered as a latent class model. Let λ_k denote the unconditional probability that a unit belongs to latent class k, with $\sum_k \lambda_k = 1$, and let λ denote the vector $(\lambda_1, \ldots, \lambda_k, \ldots, \lambda_K)$. It is assumed that the data in row q_i of Q for any unit i that is
allocated to latent class k are independently and multivariate normally distributed with means $\mathbf{\mu}_k = (\mu_{k1}, \ldots, \mu_{kj}, \ldots, \mu_{km})'$ and common variance σ^2. The class-specific mean vector $\mathbf{\mu}_k$ is reparametrized in terms of the vector of p-dimensional Euclidean distances $d(\mathbf{x}_k, \mathbf{Y})$ between the ideal point \mathbf{x}_k and the column points \mathbf{y}_j, collected in the rows of the $m \times p$ matrix \mathbf{Y}. Thus for unit i in class k we have

$$q_i \sim N(\mathbf{\mu}_k, \sigma^2 \mathbf{I}) \quad \text{with} \quad \mathbf{\mu}_k = \alpha_k \mathbf{1} - d(\mathbf{x}_k, \mathbf{Y}),$$

(17)

where \mathbf{I} denotes the identity matrix, $\mathbf{1}$ denotes an m-vector of ones, and α_k is a class-specific additive constant, which picks up the general response level of class k that cannot be accounted for by the distance model. The independence assumption entailed in (17) is analogous to the assumption of local independence in the classical latent class model (Lazarsfeld and Henry, 1968). The reparametrization in (17) implies that the data are assumed to be similarities on an interval scale, i.e. inversely and linearly related to the distance, which in turn is related to a smaller number of spatial parameters.

Model assumption (17) is conditional upon the class membership of unit i. Because in fact we do not know to which latent class a particular unit belongs, the probability density function $\phi(\cdot)$ of the data of an arbitrary unit i is a finite mixture of multivariate normal densities $f(\cdot)$:

$$\phi(q_i | \mathbf{X}, \mathbf{Y}, \lambda, \alpha, \sigma^2) = \sum_k \lambda_k f(q_i | \mathbf{x}_k, \mathbf{Y}, \alpha_k, \sigma^2),$$

where the ideal points are collected in the rows of the $K \times p$ matrix \mathbf{X}, and the additive constants in the vector α. It should be noted that we are dealing here with a special case of the general mixture model with multivariate normal densities as discussed by Wolfe (1970); a similar specialization for fitting the bilinear model with latent classes has been proposed by De Soete and Winsberg (1993).

Generalized EM algorithm for unfolding with ideal points for latent classes

As is the case with most mixture distribution problems (cf. McLachlan and Basford, 1988), the parameters of the latent class unfolding model are most conveniently estimated by means of an EM algorithm (Dempster et al., 1977). For this purpose, the unknown indicator matrix \mathbf{G} with elements $\{g_{ik}\}$ is introduced, containing "non-observed data": g_{ik} indicates the class membership of unit i with respect to class k. Row i of \mathbf{G}, written as a column vector, is denoted by \mathbf{g}_i. Assuming that the \mathbf{g}_i are independently and identically multinomially distributed with probabilities λ, the likelihood of the
"complete data" can be written as

\[L_C(X, Y, \lambda, \alpha, \sigma^2 \mid Q, G) = \prod_i \prod_k \lambda_k^{g_{ik}} f(q_i \mid x_k, Y, \alpha_k, \sigma^2)^{g_{ik}}. \]

Using (17), the complete-data log-likelihood can therefore be given explicitly as

\[\log L_C = \sum_i \sum_k g_{ik} \log \lambda_k - mN \log \sigma(2\pi)^{1/2} - \left(1/2\sigma^2\right) \sum_i \sum_k g_{ik} \| q_i - \alpha_k 1 + d(x_k, Y) \|^2. \]

(18)

The generalized EM (GEM) algorithm for maximizing (18) alternates between an E-step (expectation step) and a generalized M-step (partial maximization step). Since \(\log L_C \) is linear in \(g_{it} \), the E-step of the algorithm amounts to determining the expected value of \(g_{it} \) given the observed \(q_i \) and the current fitted parameters. These estimated expected values \(E(g_{ik} \mid \cdot) \) are equal to the current conditional probabilities that \(q_i \) belongs to each of the \(K \) classes (Dempster et al., 1977).

Given the \(E(g_{ik} \mid \cdot) \), which may be inserted in (18) to obtain the expected log-likelihood, the provisional parameter estimates are improved in the generalized M-step, and new expected values of \(g_{ik} \) are determined. As is well-known, the GEM procedure converges monotonically; for further details concerning the partial maximization of the expected log-likelihood, see De Soete and Heiser (1993). Here, just one more interesting feature is pointed out. Given estimates of \(\lambda, \alpha, \) and \(\sigma^2 \), the maximization of the expected \(\log L_C \) only involves the minimization of the third term in (18), which can be decomposed, with \(E(g_{ik} \mid \cdot) \) inserted, into a within-class and a between-class component:

\[\sum_i \sum_k E(g_{ik} \mid \cdot) \| q_i - \alpha_k 1 + d(x_k, Y) \|^2 = \sum_i \sum_k E(g_{ik} \mid \cdot) \| q_i - \overline{q}_k \|^2 + \sum_k \gamma_k \| \overline{q}_k - d(x_k, Y) \|^2. \]

In this decomposition, which can be verified by applying Huygen's Theorem \(K \) times on the vectors \(q_i \) with masses \(E(g_{ik} \mid \cdot) \), we have used the notation \(\overline{q}_k = \sum_i E(g_{ik} \mid \cdot) q_i / \sum_i E(g_{ik} \mid \cdot) \) for the weighted mean observation vector for class \(k \), and \(\overline{q}_k \) for the pseudodistances \(\overline{q}_k = \alpha_k 1 - \overline{q}_k \) (i.e., transformed data that are to be approximated by distances). The quantities \(\gamma_k = \sum_i E(g_{ik} \mid \cdot) \) are the expected marginals of \(G \), and are estimates of \(N\lambda_k \). The first component is a pooled mean squared deviation within classes, and estimates \(Nm\sigma^2 \), while the second component is a between-class residual sum of squares, which is equal to a weighted least squares unfolding loss function. So good fit of the unfolding model to the class-specific pseudo-distances will tend to annihilate the between
component, and the within component measures the homogeneity of the classes.

Latent class unfolding of 1979 sympathy ratings in Dutch Parliament

Rating party sympathies among Members of Parliament is a continuing collaborative research project in the Netherlands that started in 1968. As the number of political parties tends to decrease over time, it is interesting to analyse some of the older data to retrospectively predict party merging with the latent class approach. In Table 4 13 parties are given that were present in Parliament in 1979; they are listed in order from political left to political right according to expert judgment, and grouped on *a priori* grounds in the same groups as the ones used in Figures 1 and 2. The 135 MP's that participated in the 1979 study belonged to eight of the thirteen parties listed in Table 4. MP's of the remaining (small) parties did not participate for a variety of reasons. A detailed description of the model selection process for constrained latent class methods in general, and of the results to be presented below can be found in De Soete and Heiser (1993); these data have also been analysed by Meulman and Verboon (1993) with their generalization of *points of view analysis*.

Two important parameters for model selection are K, the number of classes, and p, the dimensionality of the unfolding representation. They have been chosen, first K and then p, by a parametric bootstrap significance test based upon Monte Carlo simulation of the distribution of the likelihood ratio statistic. An elementary approach like that is necessary, because the regularity conditions for the usual asymptotic distribution of the likelihood ratio statistic are known to be violated when comparing two mixture models with a different number of component distributions (see McLachlan and Basford, 1988). The significance tests are given in Table 5; they indicate that 3 classes are sufficient for these data, leading to an unconstrained latent class model with 42 ($3 + 3 \times 13$) degrees of freedom. For two two-dimensional unfolding models, one with three class-specific additive constants and the other with one common additive constant, the Monte Carlo significance tests are also reported in Table 5. The
model with the separate additive constants seems to fit the data equally well as the unconstrained 3-class model (but has only 35 degrees of freedom), while the common additive constant model must be discarded at a rejection level of .05.

The unfolding configuration is displayed in Figure 8. In the figure, the latent class ideal points are labeled A, B, and C. Each MP can be assigned to one of these classes on the basis of the posterior probabilities that follow from the estimated parameters and Bayes' rule. Such a classification was carried out for the solution presented in Figure 8 and is summarized in the right part of Table 5. From the table, it is clear that latent class A groups most of the MPs of the leftists parties PSP, PPR, PvdA and D66. The members of the christian-democratic parties ARP, KVP and CHU are mainly classified in latent class B, while class C groups the members of the VVD, which is an economically conservative party. In Figure 8, an ellipse is drawn around the parties that correspond to each latent class according to this classification. Note that the major features of Figure 7 are very similar.

During the eighties, two mergers occurred in the Dutch political scene: the christian-democratic parties KVP, ARP and CHU merged into the CDA (Christian Democratic Appeal), and the small left-wing parties CPN, PPR and PSP merged into the GL (Green Left). At the right, nothing much changed, except that D70 disappeared. The first actual merger is our latent class B, but the second was not along the lines of latent class A, as we could have predicted. Although the formation of a large progressive party around PvdA and D66 has been rather seriously contemplated, the process aborted. Meanwhile, according to recurrent opinion polls, the balance of seats in Parliament among these two parties would have to be dramatically altered in favour of D66.
Discussion

In this chapter, we have found it useful to distinguish nonlinear methods in several ways. A first major distinction is between methods that use nonlinear transformations of the data to obtain more simple relationships, and methods that are nonlinear in their description of systematic variability. A second major, three-fold distinction is between methods that focus on heterogeneity of samples or populations, methods that regard the set of units as homogeneous, and methods that take the units as a group of fixed, recognizable objects. Thirdly, we have seen that the distinction between fixed and stochastic (which in turn might be split into homogeneous and heterogeneous) is applicable to sets of variables too. The unavoidable occurrence, in many sciences, of stochastic sets of variables – or "indicators" with measurement errors – forms an important reason why the homogeneity analysis methods described in Part I exist, and why various forms of variable reduction, quantification, and transformation are of interest.

An obvious link upon which we have not been able to touch, is the relationship between analysis of variance and multiple regression with ordinal transformations, as in MONANOVA and CANALS, with generalized linear modelling (McCullagh and Nelder, 1983). There is also a close link of OVERALS with generalized Procrustes analysis (Gower, 1975) and matching of configurations of points (Commandeur, 1991), but here the similarity is more in terms of the algebra and the mechanics of algorithm construction, because the rationale of restricting cross classification variables in terms of linear combinations of edge variables has nothing to do with Procrustes analysis or matching. Our example in Part I presented a new possibility – which is a unique feature of OVERALS, not shared by its two-sets predecessors – to give a multidimensional solution with optimal dimension reduction in a situation of predicting one criterion variable.

Considerations of homogeneity and heterogeneity also extend to sets of residuals. In actual data analysis, heterogeneous residuals are the rule, rather than the exception – especially with the highly parametrized models considered here. So far, there have only been a few attempts to robustify these nonlinear methods along the lines presented in Part II (Heiser, 1987b, 1988; Verboon and Heiser, 1992, 1994; Verboon, 1993). Frequently, a sensible thing to do when one has to work with least
squares methods is a *post-hoc* stability analysis (Gifi, 1990), to get an impression of the sensitivity of the results to changes in the data. A noteworthy theoretical study of apparent "anomalies" in the results of these nonlinear methods under specific circumstances is Buja (1990).

In Part III we discussed constrained latent class analysis in some detail, because it seems to have prototypical elements that can be adapted to a wide variety of other situations and models. A similar rationale for the case of unfolding binary and ordered categorical data, for example, was developed in Böckenkoltz and Böckenkoltz (1991). Generalized points-of-view analysis (Meulman & Verboon, 1993) is another classification approach of great flexibility, in which data vectors or matrices are clustered so that some parametric model is optimized *within* clusters, rather than *between* clusters, and there, too, a wide range of new developments is to be expected.

References

607-649.

Heiser, W.J. and Meulman, J.J. (1994). Homogeneity analysis: exploring the distribution of variables and their nonlinear relationships. In M. Greenacre and J. Blasius (Eds.), Correspondent-

Horst, P. (1936). Obtaining a composite measure from a number of different measures of the same attribute. Psychometrika, 1, 53-60.

Van Buuren, S. and Heiser, W.J. (1989). Clustering N objects into K groups under optimal scaling
Table 1. Classification of multivariate approaches by distinguishing type of variability in both units and variables

<table>
<thead>
<tr>
<th>SET(S) OF UNITS</th>
<th>SET(S) OF VARIABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fixed</td>
</tr>
<tr>
<td></td>
<td>(no reduction of variables)</td>
</tr>
<tr>
<td>fixed</td>
<td></td>
</tr>
<tr>
<td>(recognizable units)</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Data display</td>
</tr>
<tr>
<td></td>
<td>and approximation</td>
</tr>
<tr>
<td></td>
<td>Procrustes analysis</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stochastic</td>
</tr>
<tr>
<td></td>
<td>(variable reduction)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>homogeneous</td>
<td></td>
</tr>
<tr>
<td>(exchangeable units)</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Multivariate</td>
</tr>
<tr>
<td></td>
<td>distribution theory</td>
</tr>
<tr>
<td></td>
<td>Loglinear modelling</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Spearman hierarchy</td>
</tr>
<tr>
<td></td>
<td>and</td>
</tr>
<tr>
<td></td>
<td>LISREL modelling</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>heterogeneous</td>
<td></td>
</tr>
<tr>
<td>(recognizable subpopulations)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Mixture models</td>
</tr>
<tr>
<td></td>
<td>Clustering/classification</td>
</tr>
<tr>
<td></td>
<td>Classical discriminant analysis</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Canonical correlation</td>
</tr>
<tr>
<td></td>
<td>Homogeneity analysis</td>
</tr>
<tr>
<td></td>
<td>Reduced rank regression</td>
</tr>
</tbody>
</table>

Table 2. Variables of the social indicator data of the US, partitioned into three sets

<table>
<thead>
<tr>
<th>First set</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>URB</td>
<td>Ratio of urban to rural population (3)</td>
</tr>
<tr>
<td>INC</td>
<td>Per capita income in dollars (2)</td>
</tr>
<tr>
<td>LIFE</td>
<td>Life expectancy in years (2)</td>
</tr>
<tr>
<td>HOMIC</td>
<td>1976 homicide/non-negligent manslaughter rate (2)</td>
</tr>
<tr>
<td>UNEMP</td>
<td>1975 unemployment rate (3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second set</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHOOL</td>
<td>Pct of population who are high school graduates (1)</td>
</tr>
<tr>
<td>PUBLIC</td>
<td>Percent of public school enrollment (1)</td>
</tr>
<tr>
<td>TEACH</td>
<td>Ratio of public school pupils to teachers (1)</td>
</tr>
<tr>
<td>ILLIT</td>
<td>Illiteracy rate in percent of population (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third set</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FAIL</td>
<td>Rate of failure on the Selective Service mental ability test (1)</td>
</tr>
</tbody>
</table>

Sources:
(1) Walberg & Rasher (1977); (2) Wainer & Thissen (1981); (3) Birnbaum (1979)
Table 3. Fit of the transformed variables in the component space (correlations with FAIL in brackets)

<table>
<thead>
<tr>
<th></th>
<th>first set</th>
<th>second set</th>
<th>third set</th>
</tr>
</thead>
<tbody>
<tr>
<td>URB</td>
<td>.69 (.12)</td>
<td>SCHOOL .87 (-.79)</td>
<td>FAIL .99</td>
</tr>
<tr>
<td>INC</td>
<td>.82 (-.59)</td>
<td>PUBLIC .78 (-.07)</td>
<td></td>
</tr>
<tr>
<td>LIFE</td>
<td>.86 (-.83)</td>
<td>TEACH .31 (.19)</td>
<td></td>
</tr>
<tr>
<td>HOMIC</td>
<td>.79 (.74)</td>
<td>ILLIT .90 (.88)</td>
<td></td>
</tr>
<tr>
<td>UNEMP</td>
<td>.16 (.16)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Parties included in the 1979 party sympathy study, and classification of MP's based on expert grouping and on posterior probabilities

<table>
<thead>
<tr>
<th>Party</th>
<th>Description</th>
<th>Expert grouping</th>
<th>Latent class</th>
<th>number of MP's</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPN</td>
<td>Communists</td>
<td>left-wing</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PSP</td>
<td>Pacifistic Socialists</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PPR</td>
<td>Radical Christians</td>
<td>social-democrats</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>PVA</td>
<td>Labour</td>
<td>democratic-liberal</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>D70</td>
<td>Social Democrats (conservative)</td>
<td>christian-democrats</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>ARP</td>
<td>Protestants (lower class)</td>
<td></td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>KVP</td>
<td>Catholics</td>
<td>conservative-liberal</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>CHU</td>
<td>Protestants (upper-middle class)</td>
<td></td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>VVD</td>
<td>Liberals (econ. conservative)</td>
<td></td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>GPV</td>
<td>Very conservative Calvinists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGP</td>
<td>Very conservative Calvinists</td>
<td>right-wing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>Farmers' Party</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Class Totals: 66 44 25 135
Table 5. Results of the 1979 party sympathy study

Analyses with no constraints on the class means

<table>
<thead>
<tr>
<th>No. of Classes (K)</th>
<th>Model df</th>
<th>Log Likelihood</th>
<th>Monte Carlo significance test of K versus $K + 1$ classes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Likelihood Ratio</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>-8025.5</td>
<td>758.1</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>-7646.5</td>
<td>210.9</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>-7541.1</td>
<td>109.0</td>
</tr>
</tbody>
</table>

Analyses with 3-class unfolding models

<table>
<thead>
<tr>
<th>No. of Dimensions (p)</th>
<th>Common α</th>
<th>Model df</th>
<th>Log Likelihood</th>
<th>Monte Carlo significance test against 3-class unconstrained model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Likelihood Ratio</td>
</tr>
<tr>
<td>2</td>
<td>yes</td>
<td>33</td>
<td>-7582.2</td>
<td>82.3</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>35</td>
<td>-7572.3</td>
<td>62.5</td>
</tr>
</tbody>
</table>

Note

The Monte Carlo significance procedure is based on $n = 500$
Figure 1.
Nonlinear regression of POLITICAL PARTY on URBANIZATION in Dutch 1986 elections (figures in thousands).
Figure 2.
Monotonized regression of POLITICAL PARTY on URBANIZATION in Dutch 1986 elections (figures in thousands).
Figure 3.
Sum of squared distances among pairs of vectors (left) is equal to $2m$ times sum of squared distance towards their center (right).
Figure 4.
Object points and projected edge variables in two-dimensional OVERALS solution for US data.
Figure 5.
Optimal monotonic transformations for 10 variables in two-dimensional OVERALS solution for US data.
Figure 6.
The disturbing effect of one outlier in Procrustes analysis.
Figure 7.
Unfolding of 1990 party sympathies of Dutch Members of Parliament in two dimensions, with political issue directions fitted in afterwards.
Figure 8.
Latent class unfolding of 1979 party sympathies of Dutch Members of Parliament in two dimensions (dashed ellipses indicate parties corresponding to each latent class).