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Summary

Biplot axes are here interpreted as coordinate axes. For linear biplots, interpretation must
be in terms of non-orthogonal axes and it turns out that there is a fundamental distinction in
how these axes are scaled, depending on whether they are to be used for interpolation or
prediction. Interpolation is expressed in terms of vector-sums; prediction in terms of what
is here named back-projection, in which the concept of nearness is fundamental. The
methodology extends to non-linear biplots; in these, linear axes are replaced by non-linear
trajectories but now, rather than just different scales on the same biplot axes, separate sets
of trajectories are needed for the interpolation and prediction operations. The methodology
also embraces categorical variables; in these, axes are replaced by a simplex of category-
level points. Interpolation remains by vector-sums and prediction by back-projection but
nearness now plays a more overt part and leads to the consideration of neighbour-regions.



1 Introduction

One of the most basic and frequently used statistical methods is to plot a scatter diagram
showing the pattern of relationships between a set of samples, on which there are two
measured variables x and y, say. One may go on to fit a curve to this scatter, or one may
be interested in the possible clustering of samples, or one may be interested in outliers, or
one may be interested in collinearities or other regularities. The fundamental tool here is
representation with respect to orthogonal Cartesian coordinate axes with the scales of
measurement (perhaps in some normalised form) marked along the two axes.

The most simple multivariate extension is to represent samples on which there are p
measured variables, relative to p orthogonal axes. Because p-dimensional Euclidean space
cannot easily be visualised, it is natural to introduce the additional step of approximating
the p dimensional relationships in few, usually two, dimensions. There are many ways of
approximating but let us consider, at least initially, one of the most popular - principal
components analysis. Here the p-dimensional scatter of the samples is approximated by
their scatter in an r-dimensional sub-space, obtained by orthogonal projection of Ry, onto
R r, chosen to minimise the sum-of-squares of the residuals orthogonal to R,. The
approximation of the variables is given by biplot axes (Gabriel, 1971) which are the p
vectors through the origin, G, obtained as the orthogonal projections of the Cartesian axes
onto Ry. Of course, p orthogonal axes cannot be represented orthogonally in fewer than p
dimensions, so that in an r-dimensional approximation most, if not all, of the biplot axes
must be oblique. Furthermore, to represent r-dimensional coordinates relative to p
(oblique) axes, where r < p, introduces an element of superfluity which needs
consideration. Gower (1991) has stressed the usefulness of regarding the biplot axes as
coordinate axes, marked with the scales of measurement of the original variables in the
same way as were the original orthogonal axes. Although this is not the usual basis for
interpretation used with biplots, nevertheless it is the one that is developed in the
following. This approach is taken in the belief that interpretation in terms of coordinate
axes offers a key to the understanding of several forms of biplot. There is more to their
proper understanding than might at first be thought. I believe that full understanding can
come only from a thorough exploration of the underlying geometry and this is the theme of
section 2. Indeed, this preliminary geometrical study is essential when one considers the
extension of classical linear biplots to the non-linear form (Gower and Harding, 1988),
which admits the use of general distances among quantitative variables, and to generalised
biplots (Gower, 1991), which further admits categorical variables. The geometry of these
extensions is discussed in sections 3 and 4. In their turn, these generalisations throw more
light on the special case of the linear biplot.

1.1 Notation

Matrices are printed in bold capitals, vectors in bold lower-case and scalars in italics. The
sizes of matrices are given initially but thereafter sizes are by implication. By convention,
vectors are column-vectors when they refer to directions and row-vectors when they refer
to coordinates - the distinction is artificial because the end-point of a direction may be
regarded as a set of coordinates and the coordinates of a point have a bearing from the
origin; nevertheless the distinction is found convenient. A vector of units is written e and
ek is a unit vector on the kth axis. Vector-spaces are written in curly capitals R or Rp,
where the suffix, when present, gives dimensionality. Coordinate axes, not necessarily
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linear, are named by lower-case greek letters (e.g. k) with one suffix, and a coordinate
position on such an axis has a label X; and a marker xjk, giving the value of the variable at
the point labelled X; on the kth axis; the suffix k£ will be dropped when there is no
ambiguity. Notionally, markers exist at all points of &k but, in practice, physical markers
will be present at only few points, usually spaced at equal intervals of the values of the
variable. A consistent notation (X, Xj, xik, k) linking all these concepts would have
been desirable but was found to be impracticable, partly because sub-spaces would then
have two, or more, nomenclatures but also because in the important one-dimensional
case, X and &k become synonyms.

The origin of R has already been labelled G. This unusual notation is used because, in the
following, the origin is at the centroid of a set of points. The symbol O is reserved for a
point representing the sample means of a set of variables; O and G coincide in components
analysis, but not otherwise. Centroids occurring in other contexts are labelled H.

1.2 Algebra of Linear Biplots

The methodology of linear biplots may be expressed very simply by considering the n x p
data-matrix X, assumed centred at its mean, so that e’X =0, and using the singular value
decomposition:
X =UZV' (D

then plotting the rows of UX to give n p-dimensional coordinates for the samples and the
p rows of V, each of which gives the p-dimensional coordinates of one point on a
corresponding biplot axis. It is assumed that the singular values on the diagonal of X are
presented in non-increasing order. In r-dimensional approximations, V and Z are replaced
by their first r columns, Vy and Xy. The approximation of X in R is given by its
orthogonal projection XV, = UXV'V, = UL,; these coordinates are often termed the r-
dimensional principal component scores. Any sample x, not necessarily one whose
coordinates are given by a row of X, can be projected into Ry by evaluating xVy. In
particular, a value of one unit of measurement on the kth Cartesian axis becomes etV on

the kth biplot axis, and should be so marked to give the correct scale. Thus if x =

ixkek, its projected position in Ry is given by ( ixkek)vr = ixk(ekvr). This means
k=1 k=1 k=1

that to interpolate x, one need only take the vector-sum of the markers (x1,x2,...,.xp) on
the biplot axes.

When P; corresponds to one of the n samples, prediction of the values (xj1,X;2,...,Xip) to
be associated with a given point Pj in R is also a common requirement. Prediction is
given by the Eckart-Young (1936) theorem (see section 2.3), which gives the least-squares
rank r inner-product approximation to (1):
X =UZ,Vp,

so that Xjg= (ui}:r)v}(. That is, we have to project the ith sample-point of Ry onto the kth
biplot axis, Bk, and multiply by the length of vk, whose elements are the first r columns of
the kth row of V. The multiplication can be avoided by marking the length of v as a unit
point on the kth axis, giving a scale for prediction that differs from that described above

3



for interpolation. Relative to this new scale, Rik may be read off immediately against the
prediction-marker nearest the projection of P; onto B The same method applies even when
P; does not correspond to an observed sample. Figure 1 illustrates the situation.

Figure 1. The biplot axes B1,2 and B3 have circular markers for the prediction scales and

vertical markers for the interpolation scales. The figure shows (i) the interpolation
of a point (3,4,2) at P through the centroid H of By, B9, B3, (ii) the predictions
associated with P, (iii) the null-point with coordinates labelled N1, N2, N3 and (iv)

the interpolation of the point (3%, 2, 4), also with centroid H and hence also at P.

Figure 1 prompts the following remarks, some of which may not be fully comprehended
until section 2 has been read:
(1) The unit of scale for interpolation is always smaller than the unit of scale for

prediction, because projection reduces length.

(2) Scales for different variables differ, even if they were equal before projection onto Ry .
(3) Every point P; of Ry generates a unique set of predictions.
(4) In the figure, the values (3,4,2), denoted by the triangle B1,B7,B3, is interpolated at P

in

by the vector-sum rule; P is also predicted as (3,4,2), so the two scales are consistent
for these values. This is because P must actually lie in Ry. The values (3-21-,2,4),
marked by the triangle with dashed lines, also interpolate into P, so the scales are not
consistent for these values. This is because these are the coordinates of a point that is
outside Ry. The small shaded triangle N1,N2,N3 is consistent for both interpolation and
prediction at the origin; any multiple of its coordinates may be added to any consistent
set of coordinates to give an interpolation that is not consistent with prediction. This is a
manifestation of many points of Rp projecting into a single point of Ry. In the example
shown, the coordinates of the dotted triangle are those of B1,B2,B3 less twice the
coordinates of N1,N2,N3. With respect to the interpolation scales, the more discrepant
the values of an inconsistent set of coordinates, as compared to those of its consistent
counterpart, the further is the sample-point from R. Because in a good approximation
all points should be close to R, residuals should be small and most values occurring

a sample should be close to being consistent for interpolation and prediction.
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(5) The maximum and minimum values of xf in the sample determine natural limits for the
scales as plotted. Just as with ordinary x-y plots, one would choose the lengths of the
axes to accommodate comfortably the values that had actually occurred or might
reasonably be expected to occur. Axes with short lengths, relative to other axes, play
little part in the approximation and might be deleted.

(6) A unit of one standard deviation is often marked on biplot axes. This raises no new
problems and can be useful when X is believed to be a sample from some well-behaved
distribution. Often, it might be better to mark on each biplot axis B, the actual values
occurring for the n samples in the kth variable, thus giving a flat histogram indicating
skewness, outliers, or the degree of non-uniform sampling.

In this section, some of the properties of biplots have been rehearsed. The distinction
between interpolation and prediction has been shown to induce two scales; the interaction
between the degree of approximation and the two scales has also been demonstrated, and it
has been shown that useful high-dimensional information may be preserved in two
dimensions. These types of consideration underly much of the following discussion.

2 The Geometry of Linear Biplots

It is convenient to begin by reexamining the fundamental representation given by
orthogonal Cartesian axes and to consider the modifications required for oblique axes.
Because much of the required geometry does not depend on the optimal approximation
described in section 1, in this section the r-dimensional sub-space R is arbitrary, unless
otherwise specified.

2.1 Coordinate Axes

Cartesian coordinate axes are so familiar, that some of the implications of their use and of
the different ways in which they may be characterised, can be overlooked. Consider
coordinates P(x1,x2) relative to two orthogonal Cartesian axes. Conventionally, this
determines a point P in two-dimensional space by moving, from an origin, x; units along a
first axis in an easterly direction and then x2 units parallel to a second axis in a northerly
direction. Alternatively we may regard the point arrived at as the vector-sum x1e1 + x2€2,
as described in section 1 for interpolating a point into a biplot representation. A third
characterisation, the normal-plane method, regards P as being at the intersection of the
normal at the marker x on the first axis with the normal at x7 on the second axis, relating
to prediction as described in section 1. These three characterisations easily generalise to
multiple orthogonal axes.

With two oblique axes, vector-sums become the parallel axis method, where P(x1,x2) is
obtained by completing the parallelogram whose other three vertices are (x1,0), (0,x2) and
the origin. Erecting normals on oblique axes determines a different position for (x1,x2).
Thus with non-orthogonal axes, these two characterisations diverge and, anticipating
future developments, this suggests that the underlying geometries of interpolation and
prediction differ, as indeed we have already seen in section 1 to the extent that the
measurement scales associated with these two objectives differ, even with classical linear
biplots.



2.2 A General Result

The result of this section will be presented in a fairly abstract way. Its relevance to
understanding biplots will become clear in following sections. Suppose L and M are two
linear sub-spaces of Rp. Initially it is assumed that both contain the origin. Suppose x is a
given point of M, then all points in the space N that is normal to M at x will be said to
predict the value x (the motivation for this definition is the normal plane method for
defining the coordinates of a point, in which all points in the space normal to a coordinate
axis at a marker x have coordinate x). When N intersects with L then NL contains all
points in L that predict x; among these points there will be y, which is nearest x. This
section is concerned with the algebraic expression for the transformation of x to y and in
its geometrical properties. The geometry is exhibited in Figure 2.

G |
NAL

Figure 2. N is normal to M. at x. y is the point in NNL that is nearest x. y is termed the
back-projection of x in L.

Suppose that L is spanned by a set of r independent column-vectors given in the p x r
matrix L and M by s independent column-vectors given in the p x s matrix M. Without
loss of generality, and with the benefit of improved algebraic simplicity, L and M are
taken to be orthonormal throughout. That y lies in L and x lies in M is expressed by:

YKK'=0 and xXNN' = 0. 2
where KK'=1-LL'and NN'=1- MM/', where K and N are assumed to give
orthonormal bases for the complementary spaces of L and M, respectively. In particular,
the columns of N may be chosen to be an orthonormal basis for N. Because y is nearest
X, then x is an orthogonal projection of y in ™M, i.e.:

x =yMM' 3)
which is consistent with the second equation of (2). Assuming that s <r, a solution (see
appendix A) for y in terms of x, which accommodates the general case when L and M are
disjoint spaces, is:

y = x(I - K(K'NN'K)'1K'NN". 4)



Clearly (4) satisfies (2) and (3). We term (4) the back-projection of x in L. After some
algebraic manipulation and recalling that KK'=1 - LL', (4) may be written in terms of
the matrices L and M as:

y =x(I + KKM(M'LL'M)-IM")LL". 5)

When, as in Figure 2, L and M are not disjoint, (4) and (5) simplify to:
y =xM(M'LL'M)-IM'LL".
(©6)
The results (4), (5) and (6) are central to the following development.

The assumption that L and M both contain the origin may be relaxed. Suppose the origin
G is in L but that M is offset by a vector q, defined to be the projection of G onto M.
Then (2) and (3) become:
yKK'=0, xNN'=q and xMM'=yMM/,

which, it may be easily verified, remain satisfied by (4), and hence by (5). Appendix A
shows that (6) remains satisfied when qL =0, which includes the important case of a
common origin (q = (). For most of this paper this condition is satisfied but in sections
3.3 and 4.3, qL # 0 and the simplification (6) is then unavailable as a back-projection but
remains useful with a different interpretation.

2.3 The Eckart-Young Theorem

Consider the special case where M is the kth Cartesian coordinate axis, so now M is a
synonym for &k. and is one-dimensional. L remains any linear sub-space. Let P; be the
point (Xj1,Xj2,...,Xip) in Rp, representing the ith sample, whose values are given in the ith
row of X. Then xj; is the marker in M that corresponds to the projection of P; onto M.
Note that the marker xji is the nearest point in M to Pj; this property of nearness plays an
important part in the following. Let @i be the projection of P; onto L and Rik be the marker
for the projection of @i onto M. The residual difference, rj, between P; and @i is given by:

p
=Y (xik - Xik)2. )
k=1
From (7), the difference (xjk - Xik) along M. is seen as the kth contribution to 74. Using all

p
axes, k = 1,2,...,p, we have that kzgx ik - )’c\ik)z is minimised when 74 is minimised, and

. N . n p A . . . .
taking all sample points P; (i = 1,2,...,n), IX - X112 = _zlkzgxik - Xik)? is minimised
1= =

when Zr% is minimised. As is well known (e.g. Anderson, 1958), this occurs when L
contains G andis spanned by the principal axes of X'X corresponding to its r largest
eigenvalues (i.e. the principal components solution). Thus, at the minimum R =XV rin
L, or, relative to the original axes in R, XV,V}. This may be written in terms of the
singular value decomposition of X as
L = UZV'V,V}= ULV}
which is the result of Eckart and Young (1936) as cited in section 1. The above has given
a simple derivation of the Eckart-Young theorem and shows that ﬁ, obtained by
projection, is the rank r approximation to X that minimises the residual sum-of-squares of
the orthogonal projection of P; onto M. It is in this sense that B may be regarded as being
an approximation to P; for which ik predicts xjk
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2.4 Linear Biplot Geometry

The above has concentrated on the geometry of R p and even when discussing
approximation, Ry, has remained embedded in the higher dimensional space. In practice,
all useful interpretations must be based on information available solely in the lower-
dimensional space Ry. In terms of the notation developed in section 2.2, the only
information available is in L and therefore predictions of Xj by projecting onto M (i.e. the
original axes £f) are not permissible. Plots of points P; (i = 1,2,...,n) in L, approximating
the total sample variation, would be greatly enhanced if one could associate values %jx with
each sample-point but using information contained solely in L.

In section 2.2 it was pointed out that NNL contains all the points of L that predict Rik.
Because of the linearity of M, the normal planes Nj at &;k are parallel for all i, as are their
intersections N;N\L. Thus, prediction amounts to deciding in which intersection-space each
sample point of L lies. What is required, is some way of associating with every sample
point of L at least one point, marked 2jk, of the intersection space. This can be done quite
simply by constructing any line B (alias Bg) in L, placing the marker 2k at the point
where B intersects N;NL. Because of the parallelism of all these intersection spaces, the
angle of intersection with B is constant. Provided this angle is known, the value of the kth
variable for a given sample point P; in L can be predicted by constructing the space
through P; parallel to NL; the marker at the point where this intersects with B gives the
required prediction. Also, because of the parallelism, the markers on B(Bx) relate linearly
to those of M€ ) so that unit steps are of equal length. B is a biplot axis Bt for predicting
the kth variable. The geometry is shown in Figure 3.

ME)

G
Figure 3. M represents the kth Cartesian axis £, with the marked scale. B is an arbitrary
line in L which meets the parallel spaces N;NL at points with markers corresponding
to those of M. To predict Rjx for £; in L, draw the space in L that is parallel to
N;NL meeting B in B with marker 2jk; in the diagram Rik ~3.5. When B is normal
to N;NL then B is the projection of M in L and the markers on B are both the back-

projections of the corresponding markers in M and the projections of G onto
NinL.



This construction achieves the objective of obtaining predictions from information given
solely within L but the degree of generality is not convenient for practical use. It does,
however, demonstrate the non-uniqueness of biplot axes for prediction and also shows
that there is no need for L to be any special linear sub-space, such as that associated with
principal components. It is not even necessary for B to pass through the origin. All one
needs to know is the direction of B relative to NNL.

The whole process can be greatly simplified when (a) some definite angle of intersection is
chosen in advance, and the obvious choice is a right-angle, and (b) when B is made to
pass through the origin, G, rather than being freely located. With these choices, suppose
that one of the intersection spaces NNL is marked by some value %, then B, the point
defined by BA(NNL), labels (a) the marker 2 for the orthogonal projection of  onto B
and (b) the foot of the normal from G onto NNL . That is, B is the projection of G in
NNL and hence is the point in NNL that is nearest the origin. Because B lies in N, B Xis
normal to M and it follows that B is the point in NL that is nearest M. Thus B(fc\) is the
back-projection onto L of X(Q) in M but, in this linear case, the line B itself is the
projection of M onto L. These results give further insight into the operation of biplot axes
for general choices of L. Equations (4), (5) and (6) give the matrix forms for computing B
but because M. is a line so that M = m, a column-vector, and B is the projection of M onto

L, then in this case the back-projection (6) simplifies to give:
mm'LL'

®

G

Figure 4. N is normal at X(#) to M and hence P is predicted by X(%) on M and also BXG
is a right angle. B is normal to NNL so that P is predicted by its projection BX)
onto B within L. Because of the normality of B to PB, B is the nearest point in
NANL to G, and hence B is the nearest point of NNL to M,; thus B is the back-
projection of X(#) onto L. B is the projection of M onto L. Apart from the
generality of L, these relationships characterise the classical linear biplot.

The geometry is shown in Figure 4. The above results show that PB L B , B L M
and XP L M . Thus the basic requirement for predicting X(@®) on M from Pin L is the
same as predicting B on B from P in L and then predicting X(3) on M from B. The latter
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step is unnecessary, as B itself may be marked & uniquely on B, and, as required, the
prediction then is accomplished entirely within L and without loss of information. These
orthogonality results are proved algebraically in Appendix A, where it is shown that a
further consequence of back-projection is that PB L XB.

None of the results discussed in this section depend on the choice of L. Biplot axes, both
for prediction and interpolation, are defined for any sub-space L; this degree of generality
should be no surprise, as coordinate axes are not dependent on the statistical quality of the
configurations that they are used to represent. When L is a best-fitting linear sub-space, as
with components analysis, we arrive at the classical biplot, but nothing else changes.

2.5 Prediction and Interpolation

Section 2.4 discussed the geometry of predicting % for a point . It was shown that for
given L the biplot axes are not uniquely defined for prediction, although there is a unique

definition that is of special practical significance. In section 1 interpolation was expressed

p
as the vector-sum Zxkek. With orthogonal axes in Rp this gives the same interpolated

k=1
and predicted values, i.e. at the uniquely defined point P at the intersection of the normal
planes N at xi on €k (k = 1,2,...,p). The same method does not work with biplot axes
Bk (k =1,2,...,p) because in L, of r < p dimensions, the p normal planes usually will not
intersect in a common point. What is required for interpolation is the position P of the
projection in L of P, which is given by:

4 p
(Zxkek)LL' = Zxk(ekLL'). )
k=1 k=1

Thus exLL' corresponds to one unit on the biplot axis B . This axis is the same as the
previous biplot axis for prediction because it remains the projection of M onto L. However
e,LL' represents an orthogonal projection of e and not its back-projection (8) as was
required for prediction. With the understanding that different scales are required, the same
biplot axes can be used both for prediction and for interpolation, the latter being
determined by the vector-sum (9). The biplot axes for interpolation are uniquely
determined and the variant axes described in section 2.4 that are acceptable for prediction
cannot be used for interpolation, thus providing another reason for choosing B to be the
unique projections of & (k = 1,2,...,p) onto L which serves for both purposes.

Thus, in the linear case, the two sets of axes can be made to coincide and, apart from the
minor inconvenience of requiring different scales, the simplicity of having the same axes
both for interpolation and prediction adds to the simplicity of linearity. To emphasise the
differences may be seen as unnecessary mathematical obfuscation but in the following
sections it will be seen that without linearity, different sets of axes are needed for
interpolation and prediction. Linearity masks what become essential distinctions in non-
linear extensions but to understand the generalisations which follow, it is essential first to
have a clear understanding of the permissible generalities of the linear case.
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2.6 Variant Linear Biplots

The remarks of section 2.4 have made it evident that any line Bt in L suffices for
prediction of &k. Because it is any line, Bg, which will now be referred to as B, must
suffice for the prediction of all variables &k (k = 1,2,...,p). Thus only one biplot axis is
needed for all predictions. There are two problems with this apparent simplification.
Firstly B would have to be marked with p scales, which would be unreadable. Secondly,
prediction for a point in L of r dimensions would involve constructing (r - 1)-dimensional
planes parallel to the different directions Ng; the latter is impracticable unless r = 2. When
r =2, the intersection spaces NN L become lines, and it is necessary to record their
directions in L as well as their scales; a star-like icon whose rays give direction and scale
for each variable, is one possibility. For two axes, £ and E, say, one may choose B to
pass through the intersections of equal markers on NN L and Ni L; then both scales
on B would coincide; such a biplot axis will named Bk. The situation is shown Figure 5.

BBy

Markers i . . 5

7 / / / / / / /
_ - € — f ol — —— —d— — & — -
2 f -{ 5 6 7 Markers for &h
h
N,L
Figure 5. A single biplot axis Bpk, for predicting variables & and . The parallel lines
are the intersection sets Nl,lr\[, and N lff\[, Predictions for both variables are made on
Bhk, as shown.

To predict, one needs to know the two parallel directions and then move parallel to the
direction for &g to predict R4 and parallel to € to predict Xk. This operation is
demonstrated in Figure 5; note the same device can be used with conventional x-y plots.
Clearly, in r-dimensional biplots the same principle can be used to derive axes which
simultaneously predict r variables using a single scale. Such devices reduce the number of
biplot axes needed for prediction to the smallest integer greater than p/r and they allow the
rankings of two variables to be compared fairly readily; it remains to be seen if such
multiple-scale axes have any real practical utility.

The results of this section are valid for any L, including approximation spaces that have
been chosen to optimise some property of the samples - usually concerned with inter-
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sample distance. The axes B or Bpk are not normally back-projections of any axis .
There remains the possibility of choosing L to optimise some property of the biplot axes.
For example it is shown in appendix B that L may be chosen so that any p-1 axes g may
be represented by back-projections to give a single biplot axis in two dimensions. Of
course, such a choice of L is unlikely to give good approximations to sample variation.

3 Non-linear Biplots

Gower and Harding (1988) introduced the notion of a non-linear biplot for quantitative
variables; the linear biplot is a special case. Although it is convenient to represent samples
relative to orthogonal axes, there is no obligation to do so. An alternative approach is to
define a function djj = f(x},X;) giving the distance between samples i and j (i = 1,2,...,n).
With linear biplots, djj is Pythagorean distance, defined by dlzj = (i -X;)(xj -X;)".

Using the notation A = {ajj} here, and throughout, to denote a matrix A with general term
ajj, we shall require for formal mathematical reasons that:

(i) the n x n matrix {djj} shall be symmetric, djj > 0 and dj; = 0 for all i,j

(i) {djj} is embeddable in Euclidean space.
Requirement (ii) implies that n points can be found in R ;-1 that reproduce the distances
djj. In practice, (ii) may be relaxed, provided the departures from Euclideanarity are not
"too serious"”.

Thus a configuration of sample-points P; (i = 1,2,...,n) in R,_1 is given, with the distance
djj between points P; and Pj. The terminology will be used that the points P; (i = 1,2,...,n)
generate the distances djj. The dimensionality of the full space is now n -1 rather than the
previous value of p. The configuration has arbitrary axes and the problem arises of
associating with the sample-points, information on the original variables. This will be done
by finding appropriate non-linear coordinate axes. The configuration of samples in the full
space may be approximated in r dimensions and the biplot problem than becomes that of
describing what forms are taken by the non-linear axes in this approximation and what are
their properties.

In the linear case, the position X of any sample is fixed when its Pythagorean distances
from all the points P; (i = 1,2,...,n) are known. Suppose now that X is defined by sample
values Eeg, then the locus of X as £ varies reproduces &, the kth Cartesian axis. Thus the
conventional process has been inverted and rather than the axes determining the points,
now the points determine the axes. When a general distance djj is used, this process gives
a curvilinear locus of X, termed a trajectory. There is one trajectory for each of the p
variables and these trajectories are concurrent, at a point O, say, because & = 0 is common
to them all. Because X is centred at its mean, the point O corresponds to a sample taking
the mean values of all the original variables. The method has very general applicability but
here the special case is followed for which Gower and Harding (1988) gave a detailed
algebraic exposition. It is assumed that:

p
@ djj= ¥ fk(xik, xjk) (10)
k=1
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(b) The points P; (i = 1,2,...,n) are derived from D = {- %d%,} by principal
coordinates analysis (Gower, 1966), alias classical scaling (Torgerson, 1955).

In (a) it is assumed that each variable contributes independently to total squared-distance.
This may seem to be a restrictive assumption but nevertheless it includes many distance-
functions in common use (see e.g. Gower and Legendre, 1986). If it is further assumed
that fx(xik, xjk) =0 iff xjk = xjk, it easily follows that the functions for the individual
variables themselves define distances. Defining D = {- %fk(xik, Xjk)} where k is fixed,

(10) may be written:
p
D= ZDk' (11)
k=1
Assumption (b) implies that coordinates of P; (i = 1,2,...,n) can be found in, at most, n-1
dimensions as the rows of the n x (n-1) matrix Y, where A = Y'Y is diagonal, because Y

is referred to its principal axes. In this representation e'Y = 0, so the centroid of the
sample-points P; (i = 1,2,...,n) is at the origin G, which usually differs from O, the

concurrent point of the trajectories.

A coordinate representation in R, for any new point & = (§1,52,...,§p) may be found by
using a result, Gower (1968), which shows that if f(€,x;) gives the squared distance of §
from P; (i = 1,2,...,n) then the first n -1 dimensions of the coordinates of € are given by:
z=-1g'VA"l (12)

where g = f + 2De/n and f = {f(§,x;)}. One further dimension is required to represent §
exactly. Its coordinate z, in the nth dimension, is easily calculated as:

2=df- g YA2Y'g (13)
where dg represents the distance of € from G. To find dg requires the result that the
squared distance between the centroids of two sets of points given in a partitioned

(n + m)x(n + m) squared-distance matrix (é ' (]; ), including the factor -%, is given by:

L, Aq . 2
;ﬁeAe+m2eBe-nmeCe. (14)
The (n + 1)x(n + 1) squared-distance matrix for the n original samples augmented by § is:
D -f 15
1 1 b4
'Ef 0
and applying (14) shows that :
2 _eDe ef
de=="7"+7 (16)

which allows z to be calculated from (13). Thus, appending (13) to (12) gives the full set
(z,z) of coordinates in R, of €, relative to the coordinate system of Y.

In general, every point that is added introduces an extra dimension given by (16).
Fortunately this is not the problem that it might seem, when L is defined, as below, as the
space spanned by some, or all, of the columns of Y. Firstly, all the extra dimensions are
then orthogonal to L, so have no effect on projections onto L. Secondly, the mutual
orthogonality of the extra dimensions, guarantees that they are irrelevant for defining
tangents to the trajectories (section 3.3). Thirdly, when they satisfy the relationship qL =0

13



derived from (A8) of appendix A, one may proceed as if the extra dimensions do not exist.
These three properties imply that the extra dimensions can often be ignored but they have
to be allowed for when they contribute to distances, especially when defining neighbour-
regions with categorical variables (section 4.3).

3.1 Non-linear biplots - Full Space

With these preliminaries, Gower and Harding (1988) defined for the kth variable a
pseudo-sample e and established that its squared distances from the original » samples
are given by:

P
f = {fExik)) - {£O0,xik)) +k21{f(o,xik)}, (17)

which may be immediately substituted into (12), (13) and (16) to give coordinates for the
pseudo-sample.

The only term in (17) that involves & is f(€,xjk). This has the fundamental consequence
that the point & on the kth trajectory is nearest P; when f(€,xjk) is minimal, which has the
simple solution & = x;jk. This important result shows that the kth trajectory is acting like
conventional coordinate axes, at least insofar as prediction of the coordinates for a sample-
point P;is given by the nearest markers on the p trajectories. In other words the
coordinates are given by dropping normals from P; onto the trajectories, the equivalent of

orthogonal projection, and reading off the marker at the point of intersection. With
curvilinear trajectories, there may be several normals from P; to each trajectory but it is

clear that it is the shortest normals that are required and, except in pathological cases, these
will be uniquely defined.

If a sample with values (xj1,x{2,...,Xjp), is located by constructing each of the (n-2)-
dimensional linear spaces orthogonal to the kth trajectory at xjk (k = 1,2,...,p), these p
spaces will intersect, in n-p-1, or more, dimensions. Thus not only in the approximation
space but now also in the full space, a whole region predicts the same values. However,
each sample-point of a region predicts the unique values given by the nearest marker on
each trajectory. The p trajectories continue to act like conventional linear coordinate axes.

3.2 Non-linear Biplots - Interpolation

Next we examine what happens in r-dimensional approximations. As explained above, the
assumption (b) is the basis of the approximation examined here, and this implies that P; is

approximated by ﬁi which is the orthogonal projection of P; onto some r-dimensional
subspace L. The trajectories themselves may also be projected onto L in a similar manner
to the way that orthogonal Cartesian coordinates are projected onto L to obtain linear biplot
axes. When L is given by principal coordinates, it follows that the first » columns of (12)
give the coordinates of § projected onto L; the extra dimensions given by (13) are
orthogonal to L so are immaterial. In particular any pointg on the kth trajectory can be
projected onto L, and thence the whole trajectory, which may be termed the kth biplot
trajectory PBg.
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Suppose now that § = (§1,82,....&p) is a point to be interpolated into L by (12). Because
of the independence assumption (a), g may be written:

D
g= Z(fk + 2Dke/n)
k=1
where f is given by (17) with & replaced by &, so that (12) becomes:
p
- %kzi(fk + 2Dke/n)'YrA',1

where now Y, represents the first » columns of Y, which determine L, and similarly for
Ay. The kth term in the summation is the projection onto L of the point marked £k on the
kth trajectory, and hence corresponds to the marker &g on the kth biplot trajectory for
interpolation. Thus for interpolation, the vector-sum method remains valid for non-linear
biplot trajectories.

3.3 Non-linear Biplots - Prediction

Figure 6. P; has coordinate (marker) x;x on M and is approximated by ﬁi in L, which has
coordinate &(ﬁ‘ik) on M. M maps B in L as the locus of the projections of G onto
NNL where N is normal to the tangents to M. Thus the coordinate predicted for ﬁ’i
in L is B(&jk), obtained by subtending right-angles from Gﬁi to B. M need not
meet L. The non-parallelism of the normal-planes is indicated.

Now consider prediction. The geometry is shown in Figure 6, the non-linear counterpart
of Figure 3. ﬁi is predicted by Qik on the kth trajectory by dropping the (shortest) normal
from ﬁi. The linear space N, orthogonal to the kth trajectory at Qik contains all points to be
predicted by Qik and hence contains ﬁ’i itself. Within L, all points in NNL are to be
predicted by /A\Tik and the problem remains of finding a biplot trajectory to which all points
in NNL can be uniquely associated. In the non-linear case, the orthogonal projection
interpolation biplot trajectories, discussed in 3.2, are not acceptable, because as /x\ik varies
the resulting normal spaces N are not parallel as they are in the linear case; hence there is
no constant reference angle within L.
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The problem of obtaining a suitable prediction biplot trajectory in L may be linearised by
approximating the kth trajectory M at € by a linear segment, essentially the tangent t at €.
This determines M locally and, by the arguments of section 2.4, the corresponding point
on the prediction biplot trajectory is given by some point B in NNL. As is shown in
appendix A the back-projection that is nearest the axis & will no longer be convenient,
because the offset of t induces an oblique angle between its image in L and NNL. Further
this oblique angle will vary with t. Appendix A shows that the orthogonal projection of G
onto NNL, that is the point in NNL that is nearest G, is still given by (6). It is this point
that should be labelled B and marked &. All points in NNL will make a right-angle with the
line GB. As € moves along the kth trajectory in the full space, the locus of B will trace out
B the kth biplot prediction trajectory. To use this form of prediction-biplot for a point ﬁi
in L, it is only necessary to read off the marker at the point where Gﬁ’i subtends a right-
angle on the trajectory.

By

Figure 7. Non-linear biplot axis, showing a non-uniform scale. The point P; has bji = 3
for its predicted value. A second construction gives bjt = -2 but this is not the
nearest to Pj, so is excluded. O is the point common to all trajectories and G the
centroid.

The trajectories can be computed almost as simply as can be the interpolation trajectories.
Equations (12), (13) and (16) give the parametric form of the kth trajectory. As described
at the end of section 3, the extra dimensions given by (13) and (16) are irrelevant, so the
tangent at any point is easily obtained by differentiation of (12) in the usual way; the exact
form will depend on the choice of distance function. This tangent determines M and thence
equation (6) of the linear case may be used to find B in L. This calculation has to be
repeated as £ moves along the kth trajectory, M, changing with the changing tangents.
Thus, prediction of the value of the kth variable for a point P; in L is merely a matter of
subtending orthogonally onto B, the corresponding non-linear axis, and noting the value
of the marker, as is shown in Figure 7.

With a linear biplot, subtending a right angle is the same as orthogonal projection onto .
Again the non-linear case is seen to be similar to the linear case and uses only information
given in the approximation space. The major difference from the linear case is that not only
do the interpolation and prediction scales differ but so do the trajectories themselves. Thus
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it is no longer possible to have a single biplot diagram that can be used both for
interpolation and prediction; two quite separate diagrams must be used.

As with linear biplots, non-linear prediction trajectories are not uniquely defined and any
trajectory in L will suffice, provided there is a rule that allows the whole of NNL to be
constructed at every point of the trajectory. Subtending right-angles, described above, is
one such rule. Another is to construct the trajectory in L for which NL is given by the
normal to that trajectory. I have not examined the details of this construction. In the linear
case, both rules give the same trajectory but in the non-linear case they differ.

4. Generalised Biplots and Categorical Variables

Gower (1991) shows how non-linear biplots can be modified to give generalised biplots
that allow the inclusion of categorical variables. Non-linear biplots, and hence linear
biplots, are essentially special cases. Categorical variables take a finite number, /f, of
values, often termed levels. The term value will be used to emphasise that xjt may
represent a numerical value for a kth continuous variable or a category-level for a kth
categorical variable. Thus if the kth variable is colour, then xjt may have a value Blue or
Green or Red, (say), in which case /; = 3. Because categories are not continuous, they
cannot be represented relative to continuous coordinate axes. However, they may be
represented by a finite number of points, referred to as the category-level points (CLPs),
or as we shall see, by regions labelled with the category values, such as Blue, Green, Red.

In generalised biplots, the position of a marker & for the kth variable is obtained as
follows. Consider the set of pseudo-samples x; + (§ -xjk)et (i = 1,2,...,n) and find their
positions relative to the axes of Y by (12). The centroid of these n points is taken as the
point to be associated with the marker & for the kth variable. As & varies this centroid
traces out a trajectory for continuous variables and for categorical variables, determines /g

distinct points, one for each value of & that corresponds to a category-level. Unfortunately,
for continuous variables & = 0 is not a common marker on all trajectories, which therefore

are usually non-concurrent. In section 4.2 it will be shown that this defect can be
overcome for interpolation but not for prediction.

4.1 Generalised Biplots - Full Space

Gower (1991) shows that all the squared distances for a fixed & of the pseudo-sample may

be accumulated into a matrix (compare equation (15)):
D -lF
1 2 (18)
'EF "D -Dyg

where the first n rows (columns) refer to the n original samples and the second n rows
(columns) to the pseudo-samples. In (18), F = -2D + 2Dy +fxe’ where fr = {f(E.xik)}.

From (14) the squared distances from the centroid of the pseudo-samples to each of the n
original samples are given by the rows of:
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(@k—)e I-2(D - Dk))§ +fx (19)

which gives the vector f = {f(§,x;)} to be used with (12). The only term dependent on & is
fx. Thus the nearest point on the kth axis to the ith sample is when fjf is zero, i.e. f(€,xjk)
= 0 or § = xjk. This is true for both quantitative and categorical variables. Thus the vital

nearness property of non-linear and linear axes remains true for these generalised axes.

'‘D-D
Because e'Y =0, the constant term (e 2 k)e)e makes no contribution to (12) and

the form of (19) admits the further simplification:
zk = —3(fk + 2D ) YA-L. (20)

Gower (1991) shows that, for generalised biplot axes, the n coordinates corresponding to
the actual values observed for the kth variable are obtained from (12) as:
Z =(- ee'/n)DrYA-L 21

For categorical variables, (21) has only [/} different rows corresponding to the distinct
CLPs, the remaining rows being superfluous repetitions. For categorical variables, (21)
gives all the CLPs but for continuous variables it gives n points, which may not be
enough, or well-enough distributed, points to ensure a smooth trajectory. Then, it may be
necessary to augment (21) by calculating extra points on the trajectory corresponding to
unobserved values of £ in (17) and (12). As has already been observed, for continuous
variables the trajectories are not concurrent; an adjustment can be made to ensure
concurrency when interpolating (section 4.2) but this seems not possible for prediction.
Otherwise, for continuous variables the same geometry applies as described in section 3
for non-linear biplots and no further comment is required.

For categorical variables, the extra dimensions induced by the coordinates of (13) and (16)
now require that dimensionality n* is given by n* = n + [ - 1. It has been shown that in
the full space Rp*, every sample is nearest its CLP. Thus in Rp*, if we wish to predict
(section 4.3) the categorical level of a sample, it is sufficient to find the nearest CLP. Thus
for every categorical variable, Rp,* may be partitioned into neighbour-regions, each
containing all the samples with a particular category-level and no others.

It follows immediately from (21) that e'Z = () so that for each categorical variable the mean
of its CLPs weighted by the number of occurrences of each level, is at the origin G, the
centroid of the ordination. This result does not apply to the extra dimensions induced by
(13), showing that the subspace M of CLPs is disjoint from the space spanned by the
columns of Y, from which L is derived. Nevertheless it can be expected that the two
spaces are close in the vicinity of G. The offset q from G lies only partly in the space of
the extra dimensions, so qY # 0, and in approximations, qL # 0, the condition derived in
appendix A for the back-projection formula (6) to be valid for non-intersecting spaces L
and M. It follows that the full formulae (4) and (5) have to be used for back-projection

4.2 Generalised Biplots - Interpolation

In the approximation space L, interpolation by vector-sums remains valid with the
trajectories and CLPs of Ry, -1 projected orthogonally onto L. Again, as the coordinate z
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given by (13) is orthogonal to L, the first r columns of (21) give the CLPs in L. However,
the generalised biplot axes for continuous variables, as defined above, are not concurrent.
This is an inconvenience that may be avoided by noting that, so long as they sum to zero,
any vectors may be added to each zj of (20) without affecting interpolation. Writing O to

denote the point on the kth trajectory that corresponds to the mean of the kth quantitative

variable, and O to denote the centroid of all the O, all that has to be done to ensure that the

vectors are concurrent at O, is to subtract from zj the vector corresponding to Of - O. The
position of the CLPs for categorical variables need not be changed. With this adjustment,
Figure 8 shows interpolation with a mixture of quantitative and categorical variables.

B1
-/ 4
(3,-2,1,male,red)
Red S
-1
3 L
1 4
A o Male
\ 5
#* 24 % JBlack &
. 3 1 B
Female 3 ——2
° 3
Brown

Figure 8. Generalised biplot. Interpolation as a vector-sum of a sample with three
quantitative variables and two categorical variables.

4.3 Generalised Biplots - Prediction (Categorical Variables)

Just as prediction trajectories differ from interpolation trajectories for continuous variables,
so do the CLPs for interpolating with, and predicting for, category values. Consider again
the categorical variable Colour, with three values Red, Green and Blue. These are
represented by three points in R,* which determine a triangle in a two-dimensional space
M. In general, the CLPs form an s = (/¢ - 1)-dimensional simplex in M and this is the
reason that the result of section 2.2 was required in its general form. Because of the
nearness property, the space R ,* comprising M and its normal-space N, may be
partitioned into neighbour-regions each of which contains all the samples with a particular
category-level. The intersections of these neighbour-regions with L give all points in L that
are predicted by the corresponding category-levels. This intersection is given by the back-
projection of the neighbour-regions of M, and where necessary of N, onto L. Samples
which fall in the back-projected neighbour-regions of L are predicted to have the
corresponding labelled category-levels. Inevitably, the ordinary orthogonal projections of
the samples used to give Yy in principal coordinates analysis will mean that some sample-
points will occupy wrongly labelled prediction-regions of L. Thus with categorical
variables, the distinction between interpolation and prediction is even more
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marked than it is for continuous variables, for now interpolation uses sets of points, the
projected CLPs, while prediction uses whole regions of space. The details of the
construction of prediction-regions are technically quite intricate and to avoid an imbalance
in this presentation, only an outline is given here of the problems involved; a much fuller
discussion is given by (Gower, 1992).

In general each of L, M and N may be of two parts. One part of L consists of points that
can be formed from the back-projection of a part M of M.; the other part of L can be
formed from back-projection of a part N of N. T’f and N‘ are, respectively, the
orthogonal projections of L onto M and N. There remain parts of M and N that do not
back-project onto L and so play no part in the formation of the prediction-regions. In
practice, many of these subspaces may be null. Much depends on whether r = s or r < s,
where now s is to be interpreted mostly as the dimension of J‘f but also sometimes

of T’f . When r = s, equations (4), (5), but not (6), allow the calculation of the back-
projections into L of any point in M ; note that (6) is unavailable because z, given by
(13), does not satisfy the condition gL = 0 of appendix A is satisfied.

A case of special practical importance is when /g = 3 (s = 2) and 7 =2. Then one need
back-project only 4 points, the 3 vertices of the simplex and its circumcentre, which it is
convenient to label with the name of the categorical variable itself. This information is all
that is needed to construct the back-projections of the neighbour regions in L. Back-
projection transforms mid-points into mid-points, so the boundaries of the prediction
regions can be constructed but, because nearness properties are not preserved under back-
projection, they are not neighbour-regions in L. Whenever r = s neighbour-regions can be
similarly characterised but when r > 3, practical uses are limited.

When s =l - 1>r things become more complicated. The neighbour-regions in M are
fairly straightforward but those within M are not. When r = 2, this situation will arise
whenever there are categorical variables with four, or more, levels - as is not unusual.
What has to be done, is:

(1) Project L onto M to give vectors whose columns span that part M of M
which back-projects onto L.

(2) Examine the intersection of M with the neighbour-regions of the simplex
defined by the category-level points.

(3) Characterise these intersections by a minimal set of points.

(4) Back-project the minimal set onto L to give the final configuration for the
neighbour-regions in L.

(5) When N* is not null, the back-projection of step (3) must be augmented
by orthogonal extension (see appendix A) into the corresponding part of L .

The above has indicated the kinds of problem that have to be solved for constructing
prediction-regions for categorical variables (Gower, 1992). Alternatively, the back-
projection of the CLPs give a simple approximate method that might suffice for doing most
predictions by eye. Then all that would be seen in a plot of L are points for Blue, Red and
Green, and similarly for other categorical variables. This approximation, when adequate,
has some attraction as it overcomes the impracticability of exhibiting prediction-regions for
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all categorical variables simultaneously. Unfortunately, projection does not preserve
nearness, so this approximation could be misleading if the nearness of a sample-point to a
projected CLP were used for interpretation - and it is difficult to see what other tool might

be available. For safety, one needs to exhibit prediction-regions in L for each variable
separately, together with back-projected, not orthogonally projected, samples.

5. Relationship of Non-linear to Generalised Biplots
The key results for distinguishing the two methods are (17) and (19), which give the
distances of the the pseudo-samples from the points Pj. For comparison they are

presented again, with (19) in a slightly rearranged form:

P
(fExiR)} - (FOxik)} + kzl{fm,xik)},

(@50} (551 - 2D )5+ (D1 - 2D )5

The similarity between the structure of the two expressions is obvious. The term
e' Dje . .

A (—n—k—— I-2D k) % represents the squared distances of the points that generate the
distances of Df from their centroid, Gk, say. When this term is used to approximate
{f(0,xjk)}, the two expressions become identical. With linear biplots the equivalence is
exact because then O and G coincide; it may often give a good approximation, but this

possibility needs further examination.

In section 3, it was shown that the trajectories of non-linear biplots are concurrent at O. In
section 4 it was pointed out that the trajectories for generalised biplots are not concurrent,
but in 4.2 it was shown how they can be adjusted to concurrency for the purposes of
interpolation. This adjustment is not valid for prediction, because it affects the nearness
properties associated with the pseudo-samples. That the difference between (17) and (19)
does not depend on & accounts for the fact that the nearness property holds for both. This
result entails that for a given point Pj, the difference between the vectors joining P; to the
same marker & on the two trajectories is a constant vector, and in this sense, the two
trajectories are parallel. This in turn means that the normals from P; to the two trajectories
cannot have the same marker and so must give different predictions, which is an apparent
anomaly. The problem is resolved by noting that the extra dimensions given by (13)
correct for the difference. Thus, these dimension plays an important part in determining the
correct back-projections for prediction. It might be worth examining new forms of pseudo-
sample in the hope of finding one that simplifies the properties of the additional
dimensions. One possibility suggested by (17) and (19) is to take {f(€,x;t)} as the vector
of squared distances between a pseudo-sample and the sample-points. This certainly
preserves the nearness property and it is more simple than the vectors (17) and (19) given
by the two forms of pseudo-sample so far considered. The main problem with it is the lack
of an expression for the associated pseudo-sample and there is no guarantee that such
exists without recourse to complex numbers. The advantage of the pseudo-samples used
with non-linear and generalised biplots, is that they have explicit forms that correspond to
possible real samples, however unlikely it is that they would occur in practice. Assumption
(i) of section 3 guarantees that the pseudo-sample has a real representation in R,

21



6 Conclusion

In the above, it has been assumed that the samples have an exact representation in at most
n-1 dimensions and it has been shown that they can be represented relative to coordinate
axes, possibly non-linear, in at most n* dimensions. Of course, in the linear case both
dimensions are reduced to p. Biplot axes have been defined as representations of these
coordinate axes when the configuration of sample-points is approximated in r<p<n*
dimensions. It has been shown that the form that these axes take in the approximation
space depends critically on whether they are to be used for interpolating new samples into
that space or are to be used for predicting the values of the original variables for existing or
putative samples. Both for prediction and interpolation, the biplot axes may be treated very
much as conventional coordinate axes so long as appropriate scales with associated
markers are provided. Interpolation is in terms of forming vector-sums. Prediction is in
terms of various ways of projecting points onto axes, which may be thought of as finding
the nearest (which may be distant) point on an axis to a sample-point. These are seen as the
main tools for interpreting biplots. The situation is much the same for categorical variables,
where the biplot axes become sets of discrete CLPs. Interpolation remains a matter of
vector-sums and prediction is now overtly in terms of nearness, leading to the
consideration of neighbour-regions.

One of the reasons why there is so much complication, is that for prediction purposes two
objectives are confounded. The primary objective for prediction is the calculation of NNL
for a convenient set of markers in M. Even in the linear case, this would result in the
unacceptable clutter of sets of parallel lines in L for every variable. Consequently a
secondary objective is to characterise the intersection in some simple way. The answer is
to appeal to orthogonal extension, which allows all the parallel lines for one variable to be
replaced by a single biplot axis, in the knowledge that the full intersection space at any
point on the axis can be reconstructed as the space normal to the given point in L. In
section 3.3 it was shown that a similar simplification is available for non-linear biplots and
that, for continuous variables, this carried over into generalised biplots. The intersection
space for categorical variables normally requires at least two dimensions to convey even an
approximation of the spatial properties of neighbour-regions. When, as is usual, L is two-
dimensional, this leaves no room for simplification, nor is simplification important,
because normally there are only a few prediction-regions. In three-dimensional
approximations only two-dimensional neighbour-regions (variables with three category
levels) would offer scope for orthogonal extension but even then the outcome would be
exceedingly complicated to use. Thus, for continuous variables the main thrust is on the
simplification objective, while for categorical variables it is on displaying the intersection
space without simplification. The prediction-regions in L are neighbour regions for the
CLPs in M and, as pointed out in section 4.3, the back-projections of the CLPs onto L
generate only approximate neighbour-regions within L. What one would like is a set of
prediction-CLPs in L that generate neighbour-regions in L that coincide with those
described above. It is not known whether such exist, but if they do, they would provide
the simplification required for exhibting all categorical variables simultaneously in a
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manner that allowed prediction, in a similar way that the orthogonally projected CLPs
permit interpolation within L.

Those familiar with the biplot literature may be surprised to find no mention in this paper
of correlation and little mention of principal axes. With linear biplots it is true that among
all possible projections, the projection of the sample points onto Bk gives a set of values
that have maximal correlation with the sample-values of the kth variable. This certainly
gives a characterisation of Bt but, in my opinion, one that is not of great interest. After all,
projections onto the original axis & give unit correlation, whatever the values of the kth
variable. One may interpret the result as showing that P is the best representation of &k in
the approximation space L and this leads one again into interpreting Px as a coordinate
axis. Regarding principal axes, it has been shown that the main results are independent of
the choice of L. Nevertheless, it is natural to choose L to give a best representation of the
samples and this often leads to eigenvalue problems that define L in terms of spanning
eigenvectors. Then, in addition to the biplot axes, the representation of Y in L is also with
respect to r orthogonal principal axes. Those who favour the reification of principal axes
may continue to reify and they may find the biplot axes a useful guide to interpretation of
principal axes or, indeed, they may find that the biplot axes are helpful in suggesting
interesting sets of oblique axes.

Finally, the analysis presented above has been very much in terms of projections. Yet
Gower and Harding (1988) and Gower (1991) have pointed out that the pseudo-sample
idea for both non-linear and generalised biplots may easily be modified for any form of
metric or non-metric scaling and this has been implemented by Underhill and by Heiser
and Meulman, in so far unpublished work. Provided the new points are added by a
method that is coherent with the criterion used for constructing the multidimensional
scaling (see Gower, 1991), the interpolation methods discussed above should continue to
be satisfactory but it is less clear what becomes of prediction, which is so intimately related
to the concepts of back-projection and nearness. Even the notion of the two spaces L and
M raises problems, though perhaps progress may be made here by embedding in R the
multidimensional scaling approximation L, using orthogonal Procrustes analysis. This
proposal has the advantage that principal coordinate, and hence also principal component,
approximations are optimally oriented to the configuration of samples in the full space, as
is easily seen because the Procrustes residual is the same as the minimised component
sum-of-squares of the residuals orthogonal to L. Automatically, M will be part of this
embedding but as r varies so does M and a problem has to be resolved in understanding
how the different forms of M are related. The results presented here may be viewed as a
gauge (Gifi, 1990) for what to expect, or at least what needs further investigation, within
this more general context.
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Appendix A
Derivation of Algebraic Formulae and Other Results for Back-Projection

Basic Formulae

Figure 2 gives a geometrical representation of an important special case of back-projection.
In general we are given a point X in Rp and two sub-spaces: L of dimension 7 and M of
dimension s. An algebraic expression is required for the point y € NNL that is closest to
x € N, where N is normal to M. We shall refer to y as the back-projection of x in L

through M ; when x € M, y is simply termed the back-projection of x in L. Indeed,

provided L and M are allowed to be disjoint spaces, the concept of back-projection
suffices, because it can always be arranged that x € M. Thus it is assumed that L contains
the origin G, as before, while M has an offset q at a point marked Q. Rather than choose

Q arbitrarily, fix it as the projection of G onto M,; thus q = xXNN'. Figure 9 illustrates the
geometry of this generalisation.

G

NNL

Figure 9. This is a generalisation of Figure 2, in which the spaces L and M are now
allowed to be disjoint with an offset q. N is the space normal to M at x and y is

the  back-projection of x in L and hence lies in NNL. z is a general point in NL.
Several orthogonalities are indicated.
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In this formulation, the origin G is an arbitrary point in L so it follows that q is equally

arbitrary in M. Thus, although q = 0 certainly implies that M and L intersect, the converse
is not true when q # 0. Thus, to refer to q as an offset could be misleading. The difficulty

can be avoided by choosing the origin to be at the point in L that is nearest M, which

would define q to be a true offset when L and M did not intersect and to be null when they
do. This course has not been followed, because in our applications of the results given in

this appendix, the origin G is more naturally defined as the mean of n sample-points in L,
which is an arbitrary point in terms of the geometry described.

Writing X for the space normal to L, that y € NN\L may be expressed as:

(i) YMM'=xMM' and (ii) yKK'=0, (AD)
where (i) is valid for any y € N and (ii) is valid for any y € L. Thus we require the
minimum of (y - x)(y - X)' with respect to y and subject to the constraints (Al).
Introducing Lagrange multipliers in two p-dimensional row-vectors A and L gives, after
differentiation:

y =x + AKK' + yMM", (A2)
Multiplying (A2) by NN' and using (i) of (A1) yields:
y - x = AKK'NN' (A3)

and hence:
AK = (y - x) K(K'NN'K)"1,
which on using (ii) simplifies to :
AK = - xK(K'NN'K)-1, (Ad)
provided the inverse exists, which will usually be satisfied when r = s.
Similarly, eliminating A from (A2) gives:
pM = xKK'M(M'LL'M)-1,
(A5)
Substituting (A4) and (AS) into (A2) yields after a considerable amount of algebraic
manipulation:

y = x(I - K(K'NN'K)-1K'NN"), (A6)
which is equation (4). An alternative expression is:
y =x(I + KKM(M'LLM)-IM")LL". (AT

This is the basic result (5) which, it can easily be checked, satisfies the conditions (A1)
and can be rewritten in the form (A2). Both (A6) and (A7) are normally valid for r 2 s.

From q = xXNN' we have that x = xXMM' + q. Substituting for x in (A7) then gives:
y =xMM'LL' + xMM'KKM)M'LL'M)" IM'LL' + qLL' + gKK'M(M'LL'M)-
IM'LL'
which, on substituting I - LL' for KK’ and recalling that gM = 0, simplifies to:
y = xM(M'LL'M)"IM'LL' + qLL'd - M(M'LL'M)"!M'LL") (A8)
This alternative form to (A6) and (A7) is not the most convenient for practical use but it
shows that in the very important special case when q = 0, (A6) and (A7) simplify to:
y = xM(M'LLM)-IM'LL".
(A9)
Indeed, for (A9) to be valid, it suffices that qL =0, a condition that fails to be satisfied
when M is given by the space of category-level points (CLPs) of section 4.3.
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Orthogonality Results

Let x, y and z be vectors as defined above and summarised in Figure 9. Thusxe M,y
given by (A7) is the back-projection of x in £ and z is any other vector in NNL. It is now
shown that the followoing pairs of vectors are orthogonal:

@&-2)L&x-q9 O)E-N1Ex-@9 ©F-2Lx-q.
(A10)

In all these results q may be replaced by its equivalent xXNN'. The proof is almost by
definition. Because N is normal to M at x it follows that for all z€ N we have that (x - z)
= (x - Z)NN'. Because N is orthogonal to™M we have N'M = 0. Combining these
results gives (x - ZYMM'X' = (x - Z)NN'MM'x' = 0, thus proving (a) of (A10). The
result (b) immediately follows by substituting y as a special case of the general vector z,
and (c) follows as the difference between (a) and (b). The following results are of key
importance for the success of biplot techniques:

DF-2Ly-gQand(e)(y-2LlF-x). (All)

To prove (d), substitute (A7) for y to give:
(y -2)(y -q) = (B - z)(xB - xNN')’
where B = I + KKM(M'LL'M)-IM"LL".

Expanding gives:

(y-z)(y - q) =xBx'-zBx'- xBNN'x' + zZNN'x'
which, on using zK = 0 (because z € L) and zMM' = xMM' (because z € N),
simplifies to

(y-z)(y -q)=xBMMYX'-zx' + (z - xMM")x'
which on substituting for B gives

(y-2z)(y -q'=xLL'MMx' + xKK'MM'x' - xMM'x' =0,
establishing the result. The difference between (d) and (c) gives (e).

A geometrical derivation and discussion of these results is given in section 2.4 and
illustrated in Figure 4. Result (d) is important because it does not involve x. When the two
spaces share the origin, so that q = 0, this shows that given the back-projection y, the
whole of the intersection space NL may be constructed by an orthogonal extension of y
into L, that is by using only that part of the normal space to y that is contained in L; this
requires no knowledge of Xx. When q # O the extension into L from y is oblique, which is
an inconvenience. This inconvenience can be avoided by finding the pointy y* in NNL
that is nearest G. To find y* note that the projection matrix for NNL is I - RR', say,
given by:

RR'=KK'+ LLM(M'LL'M)-!M'LL". (A12)

The vectors R are normal to NN\L so y* is given by yRR', the projection of y onto this
normal space. Substituting (A6) and (A12) for y and RR', respectively, gives after some
algebraic manipulation:
y* =xMM'LL'M)" IM'LL’
(A13)
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which is identical to (A9). The explanation is that y is the point in NNL that is nearest x

while y* is the point in NNL that is nearest G; when q = 0, and as was shown above
qL =0, y and y* coincide. Both (A7) and (A9) have their uses.

Back-projection has been defined as determining a point y when given a point x. Clearly
agglomerations of points x into lines, higher-dimensional spaces or neighbour-regions,
determine higher-dimensional spaces of back-projections.

Deficient Rank Situations

When s > r the matrices in (A6) and (A7) that require inversion are of deficient rank and
the formulae are then certainly invalid. The problem is that the dimensionality of NNL
cannot exceed r - s, so only a part M of the higher-dimensional space M can back-project
into L. Indeed, because if y is the back-projection in L of any x € M then x is the
projection of y onto M, it follows that M is the orthogonal projection of L onto M.. The
remainder of the intersection NNL, if required, may be constructed by orthogonal

extension as described immediately above. This situation is briefly explored in section 4.3
and addressed more fully in Gower (1992).

Even when s < r, the above formulae become degenerate whenever rank(LL'M) < s which

is when a subspace of M is orthogonal to L. Again M is the space common to L and M
and we may proceed as in the previous paragraph.
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Appendix B
Simultaneous Representation of p -1 Axes by Back-Projection onto Two Dimensions

In this appendix rather than expressing results relative to Rp, we shall represent all
coordinates with respect to axes in the r -dimensional space of L. Thus (8) now becomes;

_ .. mm'L
Y =XmLL'm
and when m = e}, the above simplifies to:
{L}x
= B1
2 = WLk ®B1)
where {L} is the kth row of L and zj is the back-projection of the unit marker of .
ui vy
uz v (uk vk)
With r =2,letL =| #3 v3 |, then from (B1) zf = —~5—5 (B2)

A (ut + vE)
Up Vp
L is to be chosen so that 21 = zp = Z3 = ... = zp-1 which implies that the first p -1 rows
of L are constant, i.e. L has the form::

u v
u v
L=| “ 7 (B3)
u v
Up Vp
Then the conditions for orthonormality give:
W=1-@-Du>  vi=l-@-1v2  upvp+(p-Duv =0, (B4)
which for consistency requires that u2 + v2 = — and so simplifying (B4) to:
p—
wp=l-@-Du>  vi=p-u? (BS)

where opposite signed square roots must be taken when calculating #p and vp .

For arbitrary choices of u, the settings (BS) ensure that the markers (ey,€2,...,ep-1) all
back-project to the same point z= (p - 1)(u ,v); also, ep back-projects to (up,vp). This does
not mean that the same values are predicted for all p-1 axes, because the unit marker on
each axis may be selected independently to represent any convenient value in the actual
scale of measurement. However, all sets of predictions will be proportional.

Possible special cases are

Dup=y =L po=AfPLl oL
Dup=u ‘/-I;,VP D , V m

1
Vp-1
These results are given mainly to illustrate the methodology but (i) might have some
interest as a method for isolating size effects. Rather than make p -1 axes have a common
back-projection in two dimensions, it might be more useful to choose L so that only some
subset of axes are treated in this way, the remaining being chosen to optimise
approximation in L.

and ()up=v =0,u= »vp=1.
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