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Abstract

Ordinary multidimensional scaling models are not appropriate for the
analysis of square asymmetric matrices, because the Euclidean distance
function is symmetric. A number of methods has been proposed to
accommodate asymmetry, which can all be viewed as special cases of a
general similarity-bias or hybrid model. In this paper asymmetry is viewed
as a combination of symmetric similarity and dominance and the differences
and similarities between the methods are revealed by applying a certain
decomposition to the model parameters, clearly separating skew-symmetric
dominance and symmetric similarity. The notion of skew-symmetry turns
out to be an often seen element in modeling asymmetry, although sometimes
in disguise and difficult to recognize.

There are some general methods for the analysis of rectangular
tables that do not fit so easily in the developed framework. However, when
applied to square tables these methods have interesting special cases: the
DEDICOM model and the slide-vector model.
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1. Asymmetries

Tables where the rows and columns classify the same set of entities occur in several
situations. These tables are square and often asymmetric; object i is more often associated

with or substituted by object j than the other way round. Other possible examples are:

brand switching counts like/dislike judgments

counts of telephone calls among cities citations among journals

sociometric choices confusions of one stimulus with another
first choice-second choice connections migration-rates

occupational mobility tables communication and volume flows.

These stimulus comparison data are called by Coombs (1964, p403) symmetric
proximity data if the table is symmetric and conditional proximity data if the table is
asymmetric. In the case of symmetric proximity data all entries are comparable within the
table. In the case of conditional proximity data the measures are only comparable within
each row of the table.

Another type of situation in which asymmetries arise is the case of conjoint
distances (Coombs, 1964, p44). Conjoint distances occur when pairs of pairs of stimuli are
compared and both pairs have a stimulus in common. Examples of observational schemes
for these data are: picking k out of n-1 stimuli that are most similar to the reference item,
ordering k out of #-1 objects in terms of relative similarity to the reference item, the method
of n-dimensional rank-order, the method of anchor-point ordering and the method of triads.

In the psychological literature, asymmetries are often regarded as response biases,
context effects or sampling errors added to a symmetric structure (Holman and Marley,

1972). Researchers tend to preprocess their data to make them symmetric and then apply a



MDS model, acting in line with Beals et. al. (1968), who remark: "if asymmetries arise
they must be removed by averaging or by an appropriate theoretical analysis that extracts a
symmetric dissimilarity index". On the other hand one might assume that asymmetry may
carry important information, for instance, Tversky (1977), who developed his feature
matching model from the point of view that a similarity relation is asymmetric instead of
symmetric.

It is remarkable that the majority of the models to be discussed in this paper
represent asymmetric proximities by distinguishing a similarity component and dominance
or preference component. In our experience this mixture of similarity and preference is
often reflected in the observations. The entries in the table possibly indicate both a
proximity relation and a dominance relation. Journals citing each other often can be
regarded as similar; that journal that is cited more than it is citing is the dominant member
and could be a prestigious journal. Asymmetry may have various meanings. For instance,
when one is studying interactions among cities, large cities interact more often with small
cities than the reverse. In market structure analysis, asymmetry in brand switching may
indicate which brand attracts consumers from the other brands. In sociometric research,
asymmetry can be a measure of the popularity of a person. Wish (1967) studied residuals
from a multidimensional scaling analysis and found interesting order effects in a study of
confusions among Morse code signals. Tversky (1977) found that the less prominent
stimulus was more similar to the prominent stimulus than the prominent stimulus was to the
less prominent one, in a study of judging similarity among nations. North Korea was
judged more similar to China than the reverse. Nosofsky (1991) related other constructs
such as salience, hierarchical status, good stimulus, easily encoded stimulus and high-
frequency stimulus to the asymmetry between stimuli.

A popular method for representing these observations in a low-dimensional space is
multidimensional scaling (MDS). MDS methods represent dissimilarity measures collected

among n objects. The objects can be anything: journals, personality traits, brands, persons,



cities and so on. The only necessary ingredient is that we have a measure defined on pairs
of objects indicating the dissimilarity or similarity between these two objects.
Multidimensional scaling models search for a spatial representation of the objects or stimuli

in a space of low dimensionality in such a way that the distances, denoted as d,-j(X) with
(i=1,....n; j=1....n), among the n points approximate the dissimilarities, denoted as gijj» as
closely as possible. In this paper the Euclidean distance function is considered, by far the

most commonly used MDS model, defined as:

dijiX) =X s (xis - xjs )%,

where x;j; is the coordinate of object i on dimension s.

The Euclidean distance function satisfies the following axioms:

dij >d;; =0 (minimality)
djj=dji (symmetry)
djj < djk + dj (triangle inequality)

The minimality axiom states that the distance between two objects should always be greater
than or equal to zero; the distance between an object and itself should be zero. The
symmetry axiom states that the distance from i to j should be equal to the distance from j to
i. The triangle inequality states that the distance from i to j is smaller or equal to the distance
from i to j if we travel via k. This paper studies the case where the symmetry axiom does
not hold for the dissimilarities.

Although there are more methods available for analyzing these observations, for
instance cluster analysis, we focus our attention primarily on MDS methods because this
class of models can be regarded as a prototype of a symmetric model. Some of the
decompositions we discuss can be used in combination with cluster analysis as well. For
overviews of MDS we refer to Kruskal and Wish (1978), Carroll and Arabie (1982),
Carroll and Wish (1982) and Coxon (1982).



This paper is built around two organizing themes, a general model proposed by
Holman (1979) and a decomposition theorem from linear algebra. A psychological
interpretation of this decomposition is a decomposition into a similarity and a dominance or
preference component. The interrelations between the methods can be easily seen through
these mirrors because it enables us to discuss asymmetric models in a single framework
and the decomposition often suggests a reparameterization of the parameters into similarity
and preference parameters that is more easily interpreted than the original parameters. The
general model proposed by Holman (1979) will be called a hybrid model, a term borrowed
from Carroll (1976). The hybrid model assumes proximity to be a function of symmetric
similarity and asymmetric row and column bias. This general model was called a similarity-
bias model by Nosofsky (1991), he also proposed a generalization of this model by
including asymmetric-similarity components. All models in section 3 can be viewed as a
hybrid model, a mixture of symmetric and asymmetric parameters.

We start our discussion with the decomposition of an asymmetric matrix. In section
2 we give an overview of existing methods for analyzing asymmetric tables. The
interrelations between the methods are discussed by the decomposition theorem and the
similarity-bias model. General methods for analyzing rectangular tables that can be

specialized for the analysis of a square matrix are discussed in section 4.

2. Decomposition of asymmetric matrices into symmetric and skew-

symmetric components

In this section we discuss decompositions of an asymmetric matrix: an additive
decomposition, a multiplicative decomposition and a decomposition into an upper and
lower triangle. It is shown that the additive and multiplicative decomposition yield a

separation of the similarity and dominance aspects. In section 2.4 we discuss the singular



value decomposition of a special type of asymmetry which is called skew-symmetry or

anti-symmetry. In section 2.5 we discuss other models for a skew-symmetry matrix.

2.1  Averaging
A simple and very useful result is the following. Any square non-symmetric matrix
Q with n rows and n columns can be additively decomposed into a symmetric and a skew-

symmetric matrix,
Q=S+A, @)

where S is a symmetric matrix of averages sjj = {q;j + ¢j; }/2 and A a skew-symmetric
matrix with elements a;; = {9ij-q ji}/2. The property ajj = -ajj is called skew-symmetry and
sometimes anti-symmetry. The matrix A describes the departures from symmetry, and can
be viewed as the preference or dominance part of an asymmetric matrix; if g; j>qji then
a;>0. The matrix S describes the departures from symmetry, and can be viewed as a matrix
with (dis)similarities. The matrices A and S are uncorrelated, the sum of squares of the
matrix Q can be decomposed into sum of squares due to symmetry and sum of squares due

to skew-symmetry:
2% qif = ZiZj sij +ZiZj aif.

Because of this split of sum of squares, the two components can be viewed independently.
The matrix S is the best symmetric approximation to the matrix Q in the least
squares sense. A test for symmetry in a proximity matrix has been developed by Hubert

and Baker (1979).



In the case of frequency data the matrix S is equal to the maximum likelihood
estimator of the symmetric matrix under multinomial sampling; the fit of the symmetric

matrix can be tested by the chi-square statistic (Bowker, 1948):

(9i) - gji )
i<%j gqij+qji

x?=Z
This statistic follows a chi-square distribution with n(n - 1)/2 degrees of freedom, where n
is the number of objects in the table. Another diagnostic proposed by Carroll and Wish
(1972), to assess the severity of the violations from the symmetry axiom is to study the
rank order of the corresponding rows and columns. If the rank orders of the rows are
unrelated to the rank orders of the columns then the symmetry axiom is untenable. If the
asymmetry in the data is assumed to be noise, the matrix A can be ignored and the

symmetric matrix S can be analyzed by an MDS program.

2.2 A multiplicative decomposition of a square matrix.
Another possibility of decomposing a square matrix is by writing this matrix as a

product of the geometric mean (cf Arabie & Soli, 1978) and the square root of the odds,

qij = Sij Wyj
where gij =g /j ji denotes the geometric mean and @jj = -\ ’ %{L:denotes the square root
ji

of the odds, which is generally defined as the ratio of a probability and its complement.
Suppose g;;j denotes the flow from category i to category j. Then, more specifically, we can

speak of g;; as the inflow, and g;; as the outflow. If the odds is greater than one there is

more inflow than outflow, object i dominates object j with respect to inflow. If the inflow

equals the outflow the odds equals one; thus the odds represents the balance of the system.



We can still obtain an additive decomposition by taking the logarithm of the product of the

odds and geometric mean:

log ejj =3 (log gjj - log gji =5 (95 - i ) = ajj (0).

The logorithm of the odds is called the logit; the above result shows that the matrix with

logits is skew-symmetric. A similar result can be obtained for the geometric mean:
1
log&i=log \aij gji = 5 (9ij + 9i ) = 5ij (@)
Note that this reparameterization implies that the matrix Q has all elements greater than zero.

2.3  Decomposition into an upper and lower triangle

Suppose we perform one MDS analysis on the data elements below the diagonal
and another on the data elements above the diagonal (cf. Laumann and Guttman,1966).
This procedure implies that the proximity from i to j and from j to i are viewed as different
processes, and are scaled twice: we obtain two configurations representing inflow and
outflow. The two resulting configurations are compared by visual inspection or rotated
toward each other by Procrustus rotation (Cliff, 1966). The procedure could be called
multiplicative because the Procrustes procedure amounts to applying a weight matrix to the
configuration.

Although intuitively plausible this idea may have unexpected consequences: if we
interchange or permute some rows and their corresponding columns we obtain a different
set of triangles. The analysis of two triangular matrices is not invariant of permutation of
the rows and columns. A proposal by Gower (1977) to make the analysis invariant over
permutations is to permute the rows and columns in such a way that the asymmetry is

maximized, a possible technique for doing this is seriation (cf Huber, 1976). In the ideal



case the permutation results in a square matrix where all elements above (below) the
diagonal are smaller than their corresponding elements below (above) the diagonal . This

permutation yields a worst possible interpretation of an asymmetric matrix.

2.4 Decomposition of a skew-symmetric matrix

Gower (1977), Constantine and Gower (1978) and Gower and Digby (1981)
studied the singular value decomposition of the skew-symmetric matrix A. The singular
value decomposition is a bilinear method, which means that there are two sets of
parameters, each of which forms a linear function with respect to the other. It decomposes

any matrix B into a product of the form:

B=WAYV.

Here W and V are both orthogonal matrices, i.e. W'W =1and V'V =1, and A is a diagonal
matrix with singular values. For a skew-symmetric matrix A the singular values come in
pairs, i.e. A contains the singular values 17, A},..,Ap/2, Ap/2, With the last singular value
being equal to zero when 7 is odd. Due to this peculiarity, the singular value decomposition
of a skew-symmetric matrix can be rewritten into a form that better expresses its

fundamental structure:

A=WAJW,

where W and J are again orthogonal matrices and A is the diagonal matrix of singular value
decomposition as defined above. The matrix J is a block diagonal matrix with 2 by 2 sub-
matrices with zero's on the diagonal, 1 above the diagonal and -1 below the diagonal.

When n is odd the last diagonal position is filled with a zero. The presence of J makes the



left singular vectors W a permutation and reflection of the right singular vectors WJ'. The

two-dimensional model is given by the typical elements

ajj = Aj(wiiwj2 - wiawj1)- )

When the objects o; with coordinates (w;1,w;2) are plotted in a two dimensional
space, the area of the triangle with vertices at the two points and the origin O is an
approximation of the element a;;. This diagram is also called a Gower diagram. The areas
of the triangles O o; 0j and O oj o; are equal, but they have opposite sign, thus modelling
skew-symmetry. Two points may be far apart while there is still a perfect symmetric
relation, this happens when two points are located on a line that passes through the origin.

The representation of points by vectors will be more useful; this is illustrated in Figure 1.

Figure 1: Representation of asymmetry by the bilinear model

Three objects are depicted in Figure 1; the relation between objects j and k is symmetric, the

relations of these two objects to object i are asymmetric. The greater the angle between two

10



vectors, the larger the asymmetry is. Figure 1 says nothing about the symmetric similarity
between the points; this information must be displayed in an additional plot.

If all points are collinear on a line (or almost collinear) the asymmetric part of the
data can be modeled by a linear skew-symmetric function. This special case has been
studied by Weeks and Bentler (1982), Okada (1988 a,b), Takane and Shibayama (1985)
and Holman (1979) and - in the context of Thurstone case V scaling - by Mosteller (1951)
Gulliksen (1956) and Torgerson (1958). This simple linear form of skew-symmetry can be

written as:

ajj (r) =r;-r;.

Note that this equation is obtained from equation (1) if we substitute w;p = Wj2=1 and,
ri =Ajwijj. Observe that if this simple model is true, we can permute the rows and
columns of the matrix Q by the order of r, this yields a seriated matrix (see section 2.3).
The linear model predicts asymmetry from the differences between the row and
column marginals. The model discards information from the individual cells. This can be

shown inserting the definition of a skew-symmetric matrix into the equation for computing

the r; parameters; which amounts to taking the row means of A:

r=1/n Ae =1/n (Q-Q"e = 1/n (Qe - Q'e),
where e denotes an n-vector with unities. So only the row and column sums of Q are

relevant for determining the least squares estimates of r. This linear form is the basis of

most asymmetric models (cf section 3.1, 3.3, 3.4, 3.5, 3.6, 3.7, 3.9).
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2.5  Other models for a skew-symmetric matrix

Up to a monotonic transformation of the data the skew-symmetric part of the linear
model is equal to the Thurstone case V scaling model. It might be interesting to fit other
Thurstonian models to the skew-symmetric part of the data. A general approach to
Thurstonian scaling, subsuming a large number of models is given by Takane (1980) and

Heiser and De Leeuw (1981). They proposed the non-linear model:

rs-r:
al:j=_l'%'

dij(X™)

Here the skew-symmetric part of the original model is divided by the distance between
points in the space X*. When fitting the Heiser-de Leeuw-Takane model to the skew-
symmetric part, the configuration X* will in general differ from the configuration X
obtained from the MDS method on the symmetric part. If this configuration matrix X* is
restricted to be a diagonal matrix the Thurstone Case III scaling model is obtained.

A restricted version of the model, called the wandering vector model has been
proposed by Carroll (1981) and De Soete and Carroll (1986). In the wandering vector
model the skew-symmetry is depicted as a direction of increasing dominance in the
multidimensional space.

In this section we have explained that any square matrix can be decomposed into a
symmetric matrix and a skew-symmetric matrix and that these matrices can be interpreted as
similarities and preferences (or dominances). This theorem will return as an organizing
theme in the next section, which starts with an introduction of the similarity-bias model,

our second organizing theme.
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3. Methods for analyzing square tables

This section starts with a discussion of the similarity-bias model; in subsequent
sections it will be shown how various other models are related to the similarity-bias model.
The decomposition into a symmetric part and a skew-symmetric part shows the similarity

and dominance aspects of the various models.

3.1  The similarity-bias or hybrid model

Holman (1979) proposed a general linear model for the analysis of asymmetry.
This model is, especially in stimulus identification experiments, relatively easy to interpret
in terms of symmetric similarity and asymmetric bias for the rows and columns. The

proximity of stimulus i to stimulus j is given by:

511 = F(sij +ri+ c])

where F is a general monotonic function, s;; is a symmetric similarity function and r; and
cj are bias functions on the rows and columns. The similarity-bias model is a hybrid model
(Carroll, 1976; Carroll and Pruzansky, 1981) because it allows a mixture of models: the

similarity function can be continuous and the bias functions can be discrete. The model can

represent differential self similarity and asymmetry if r; #¢;.

The bias components of the model, 7; + ¢; , can be decomposed using the theory of

section 2.1 into a symmetric similarity and skew-symmetric preference part by defining

new parameters u; =(r; + ¢; )/2 and a; =(r; - ¢; )/2. The asymmetric part or bias components
of the model can now be written as the sum of a skew-symmetric part and symmetric

component

ri+cj =u; +uj)+a; - aj,

13



where u; + u;j is symmetric and can be thought of as unique dimensions (Bentler and

Weeks, 1978) or a star-tree (Carroll, 1976); this star-tree can accommodate high centrality
or nearest neighbor data (Tversky and Hutchinson, 1986). If object i is a nearest neighbor
in the set, the object is the most similar object to all the other objects. Multidimensional

scaling imposes a bound on the number of objects that can be near to an object. If object i is

the nearest neighbor the corresponding u constant is the smallest. The dominance term g; -
a;j is skew-symmetric: a; - aj = -(a; - a;). This is the simplest form of skew-symmetry; the
points should lay on a straight line in the Gower diagram (cf section 2.4). A number of
models are special cases of this general hybrid model, for instance Weeks and Bentler
(1982), Saito (1986) and Okada (1988 a,b) are special cases with the Euclidean distance
function as a similarity function and a linear skew-symmetric function to accommodate
asymmetry.

Nosofsky (1991) proposed an extension of the similarity-bias model. In addition to

bias-related asymmetries he proposed similarity-related asymmetries:

8jj = F(sjj + ri + ¢j + mjj)

where mj; is a similarity-related asymmetry or dominance component. For identification
purposes we require sjj to be symmetric, m;jj to be skew-symmetric and 71 and ¢1 to be
zero. Other constraints could be imposed on the bias-parameters, for instance that their
sums are zero.

If we analyze an asymmetric matrix by a model that is the sum of a Euclidean
distance and a two dimensional singular value decomposition of the skew-symmetric

matrix, that is,

6ij= dij(X) + A1 (wiwj2 - wiawj),
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we obtain an asymmetric similarity model with no bias components. Similarly, if we
analyze the symmetric matrix by a distance model and the skew-symmetric matrix by the
model proposed by Takane (1980) and Heiser and De Leeuw (1981) (see section 2.4) we
obtain an asymmetric similarity model.

We conclude this section with the remark that the bias-components r; and ¢; were
initially incorporated to accommodate asymmetry, but they influence the symmetry as well.
This need not be an unfortunate state of affairs because the symmetric part of the bias

components adds a star-tree to the model that can be interpreted as centrality bias.

3.2  Feature matching model

Tversky (1977) challenged the dimensional-metric assumptions that underlie the
geometrical approach to the analysis of similarity. From a set theoretical viewpoint the
feature matching model was developed. The feature matching model assumes that each
object is characterized by a set of features. The similarity between objects i and j is
expressed as a function of their common and distinctive features. The additive version of

the model is called the contrast model. In terms of similarities we have:

gij=0f@ N -afi-)-py-i,

where (i N j ) is the number of features shared by objects i and j, (i - j) are the set of
features unique to object i with respect to object j, (j - i) is the set of unique features
belonging to object j with respect to object i and f is a measure function of the features.
This model is said to differ from the other models described in this paper by assuming a
psychological hypothesis instead of a mathematical hypothesis. The psychological content
of the model is discussed in Tversky and Gati (1978). The parameters 0, , 3 are assumed

to be positive; they must be estimated from the data, which can be done by linear regression
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techniques. The function f measures the contribution of the individual features to the
similarity between the objects. If the values of o and f3 are different the model is capable of
representing asymmetry. In addition to representing asymmetry, the model describes
differences in self-similarities of the objects as well. The feature matching model implies
that if i is more similar to j it must be true that j is more self similar than i (Nosofsky,
1991).

The feature matching model is an example of an asymmetric similarity model
because the number of unique features of an object is a relational term. The number of
unique features depends on the feature set of the comparison object. In the special case that
the measure function f is additive, the model can be viewed as a similarity-bias model
(Nosofsky, 1991; Holman, 1979).

The major problem of the feature matching model is that a suitable feature set has to
be defined. This problem is sometimes relatively easy to solve, for instance in case of a
letter confusion matrix (Keeren and Baggen, 1981), and sometimes difficult to solve, for

instance in the case of a matrix with sociometric interactions.

3.3  The distance-density model
The distance-density model (Krumhansl, 1978, 1982, 1988) extends the ordinary
distance function with additional components. Dissimilarity is modelled as a function of the

inter-point distance and the local density of points in the configuration. The formal structure

of the model is:

dijX,0.,p) = d;jj(X) + ov; + fvj,

where v; is a measure of density of points surrounding point i in the configuration. The
weights o and B must be estimated from the data. The distance-density model assumes that

within dense subregions finer discriminations are made than within less dense subregions.
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Two points within dense subregions have smaller similarities than two points of equal
interpoint distance within less dense subregions. This modified distance function need not
satisfy the minimality and symmetry axiom. If the weights ¢, f§ are unequal, the model is
capable of modelling asymmetry. As in the feature matching model the distance-density
model also represents the diagonal of a proximity matrix. The model predicts the opposite
relation between self-similarities and asymmetries compared to Tversky's model. If i is
more similar to j then it is also the case that i is more similar to itself than j.

Krumhansl (1978) proposed three measures of density: first, the self similarities
(the diagonal of the original table); second, the weighted sum of the distances from an
object to the other points, weighted in such a way that the small distances contribute more
to the density than the large distances; and thirdly the number of points within a fixed
radius of the point. Other measures of density can be obtained from cluster analysis.
Examples are: the number of nodes to pass in a hierarchical cluster diagram, or the number
of objects sharing the same cluster.

The distance-density model is a special case of the similarity-bias model (Nosofsky,
1991), with a Euclidean distance as the similarity function, and the density of points as a
bias function.

The symmetric elements of the distance-density model are d,'j(X) + (a+ﬁ)(v,- + 1)j),
and skew-symmetric elements (0—f)(v; - v))

Krumhansl (1982) studied the application of the distance-density model and the
feature matching model in the analysis of letter confusion matrices and concluded that the
models had surface similarities. The distance-density model has been extended to tree

models by De Sarbo et. al. (1990).
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3.4  Quasi-symmetry model
The model of quasi-symmetry (Caussinus, 1965) supposes a symmetric model for

pairs but includes parameters for the row categories ¢; and column categories [31 which are

allowed to be different, and which enter the model multiplicatively:
gij = k o Bj njj.

Since the njj parameters are symmetric, they can be analyzed by a multidimensional scaling

program. To identify the parameters of the model, we have to specify some constraints, a
discussion of possible constraints can be found in Constantine and Gower (1982). The
quasi-symmetry model can be written as a similarity-bias model (Holman, 1979) with an
exponential function and s;; = log 7jj, r; =log &; and ¢j =1log f;. This reformulation as a
hybrid model can be further simplified by reparameterizing into symmetric and skew-
symmetric bias terms.

Using the odds it can be shown that the model of quasi-symmetry has a linear form

of skew-symmetry:
1 1
log wjj=5 (logay; - logB; ) - 5 (logay - 1ogfB; )= ¢; - ¢,

were ¢; =2 (logo; — logf;), 2 result that can be found in Agresti (1990).

To compare the model of quasi-symmetry to the additive models we rewrite the
model in terms of symmetric and skew-symmetric components. The skew-symmetric

elements of the quasi-symmetry model are of the form:

ajj = (o5 Bj- B; o )myj,

18



The first term on the right-hand side is of a form similar to a two-dimensional singular
value decomposition of a skew-symmetric matrix. This suggests an elegant way to interpret
the row parameters & and the column parameters 8. These parameters can be plotted in a
two dimensional space and this space can be interpreted in terms of areas and collinearities,
as discussed in section 3.3. We must bear in mind that the areas between points are blown
up or shrunk by the symmetry parameters of the model. This formulation shows that the
skew-symmetry in the data is modelled as a product of the skew-symmetric and symmetric

parameters of the model.

3.5  Choice model

The choice model assumes that the ratios of the probabilities of choosing a stimulus
do not change if the number of stimuli increases, or if different stimuli are included in the
choice set. The model is related to the Bradley-Terry model (Luce, 1963) and can be

written as:

AL
l S —
) T iBk Njk

The f3 parameters reflect the tendency to favor some responses over others, and they will

account for at least part of the asymmetry in the data. Usually they are interpreted as bias

parameters. For identification purposes we may require 33 =1 and 1;; =1 for all i. The
7 parameters are symmetric; these parameters can be further analyzed by a MDS program.
Note that the normalizing term in the denominator, which ensures that the row sums of Q

are one, can also be seen as a row-specific factor accounting for asymmetry, since even if

ﬂj = 1 for all j, Q will generally not be symmetric. It is the weighted average similarity of

object i towards all other objects. The choice model is a product-multinomial model, which
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regards the row totals as fixed. If it is not assumed that the row totals are fixed the model of

quasi-symmetry is obtained (Heiser, 1988). The logit of the choice model can be written as:

log wjj = 9; - i,

where §; = B -X Bk Njk. The model is a special case of the similarity-bias model
(Nosofsky, 1991) with a similarity function 7;;, a row bias term log B; and a column bias
term log2 ¢S Njk- Rewriting the choice model as a hybrid model we can distinguish
symmetry and skew-symmetry parameter. The choice model has been extended by
Nakatani (1972), Van Putten (1982) and Holman (1979). Takane and Shibayama (1986)

showed the relation of the choice model to the distance-density model.

3.6  Scaling to symmetry

A method proposed by Levin and Brown (1979) is multiplicative scaling of the
rows or columns in such a way that the symmetry of the rescaled datamatrix is maximized.
This procedure has the problem of the choice of the side constraints on the scaling factors,
since different constraints lead to different solutions. The analysis yields rescaling
coefficients, which can be interpreted as a tendency to favor some particular response over
others. The rescaled data matrix can be analyzed by a MDS method. The rescaling
coefficients operate on the data; this in contrast to the choice model and the quasi-symmetry

model. Implicitly the procedure assumes a model of the form:

where V is a diagonal matrix of rescaling coefficients. When a perfect rescaling is possible

in the sense that S is indeed symmetric, we may rewrite this equation as Q = SV-1, then we
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apply the decomposition into a symmetric and skew-symmetric component from section

2.1 to the matrix Q, and the skew-symmetric component in the data is modeled by:

ajj = (04 - ) jj,

where ¢ = 1/vj;. In terms of the decomposition the skew-symmetric component of the

data is weighted by the symmetric part of the model. For objects with different rescaling

coefficients the model predicts severe asymmetries if the symmetry is large. If we assume

that the symmetry parameters sjj are inversely related to the distance we obtain the Heiser,
De Leeuw and Takane extension of the linear model from section 2.5. These parameters o
can also be obtained by the linear model discussed in section 2.5 when the elements of the
asymmetric matrix Q are transformed by the logarithm. This model is a special case of the
similarity-bias model where the column bias components are restricted to one and the bias
components for the rows are estimated.

A more general solution of QV =S is possible by requiring V to be orthogonal.

The matrix V can be found by V = LM’ from the singular value decomposition of

Q=LZM.

The matrix S has the structure LZL'. A method for studying the matrix LM’ is given in

Gower (1977).

3.7 Row conditional transformations

Another possibility for dealing with asymmetry is to transform the asymmetry away
by monotone or some other form of regression simultaneously with a multidimensional
scaling program (Kruskal, 1964). This can be done row-conditionally which means that

values within rows are regarded as comparable with each other, and values among the rows
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are regarded as incomparable. In the case of linear transformations this approach is related
to the work of Levin and Brown (1979), because the target (the distance matrix) is
symmetric, so that the rescaling will optimize the symmetry of the transformed data as well.
If the data are linearly transformed, the regression weights can be interpreted as bias
parameters or the tendency to favour some responses over others. One could, of course,
also transform column-conditionally, in which case the interpretation would have to be in

terms of stimulus bias instead of response bias (Nosofsky, 1991).

3.8 ASYMSCAL
Young (1975, 1984, 1987) proposed the following weighted Euclidean distance

model to represent asymmetry:
d‘z(X)=ZW‘ (is - Xig)2
ij sWis Kis = Xjs)*

where the weights wj are specific for each stimulus i and dimension s. When the weights
are unity the model reduces to the Euclidean distance model. This is the simplest model;
Young also indicates a rotation model and a reduced rank model but these are not further
discussed in the literature. The asymmetry is accounted for by row or stimulus weights
operating on the dimensions of the configuration. The resulting configuration can be
interpreted as a "birds eye view" (Collins, 1984). For each stimulus the configuration must
be adjusted by shrinking or stretching the axes. Thus for every stimulus the analysis yields
p row weights resulting in n by p additional parameters. This makes the configuration very
difficult to interpret. A remedy to this problem is to average the weights over meaningful
clusters of objects and then plot spaces for groups of objects using the averaged weights.

The ASYMSCAL procedure has skew-symmetric elements:

1
7 ZsWis - wis)(xis - xjs)2v
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which are similar to the skew-symmetric elements of the rescaling method discussed in
section 3.6, except that the object weights or rescaling coefficients are now related to the
dimensions. The differences in skew-symmetry between the object weights are larger for
dissimilar objects, because these differences are weighted by (x;jg - xjs)z.

The ASYMSCAL model can be viewed as the sum of p similarity-bias models in
multiplicative form with a symmetric similarity function log(x;s - st)z, a row bias log wjg

and the column bias equal to one.

3.9  Bidirectional trees

Additive trees (Sattath and Tversky, 1977) represent objects as "leaves” on a tree in
such a way that distances calculated between the leaves on the tree correspond as closely as
possible to the dissimilarities. Additive trees are also known under the name "free" tree
(Cunningham, 1978) and "pathlength tree" (Carroll, 1976). In trees we can distinguish
visible and invisible nodes; visible nodes represent objects and invisible nodes represent
clusters of objects. Cunningham (1978) generalized the tree to a bidirectional tree by
allowing differential weighting of the pathlenths corresponding to different directions to
represent asymmetry. The length of a sequence of links from i to j will in general differ
from the length from j to i. Carroll and Pruzansky (1975) have shown that an additive tree
can be decomposed into a ultrametric tree and a star tree. A star tree is a tree with one

internal node connecting all objects and this structure can also be represented by the linear

form u; + uj . In the case of a bidirectional tree this decomposition yields a asymmetric star-
tree that can be decomposed into u; + uj + a; - aj. This parameter structure is identical to the
asymmetric part of the similarity-bias model and thus the bidirectional tree can be viewed as
a special case of Holman (1979) additive model with an ultrametric tree as a similarity
function and row and column bias, where it is convenient to decompose these bias-

parameters into a skew-symmetric and symmetric part.
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4. Joint representation of rows and columns.

The methods discussed in this section are methods for analyzing rectangular tables.
A square table is a special case of a rectangular table, and therefore square asymmetric
tables can be analyzed by these more general methods. These methods, components
analysis and unfolding, do not easily fit in the hybrid framework. However, the
DEDICOM model and the slide-vector model can be viewed as constrained versions of
these general models that do fit in the framework of the previous section and we restrict the

discussion to these two methods.

4.1 The DEDICOM model

The DEDICOM (DEcomposition into DIrectional COMponents) model was
proposed by Harshman et. al. (1982). The model takes a non-spatial approach first but
afterwards the parameters can be graphically displayed. To show how the DEDICOM
model is related to components analysis, we write the general decomposition of a

datamatrix:

Q=LH,
where L is an n by p matrix with component scores and H is an n by p matrix with
component loadings. The DEDICOM model is a special case of factor analysis or
components analysis in the sense that the factor loadings for the rows are a linear

transformation of the factor loadings of the columns, and can be written as:

Q=LRL
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The matrix L denotes an n by p matrix of loadings of the n observed objects onto p
dimensions or aspects of the objects. The matrix R of order p by p is an asymmetric matrix
describing the directional relationships among the components or dimensions. The first
component may be more strongly related to the second component or dimension than the
reverse. That this is a constrained version of the components model can be seen by writing
H=LR'".

Applying the general tactic again, the matrix R can be decomposed into a symmetric
part C and a skew-symmetric part T. As a result of the distributive properties of matrix
multiplication the model can be decomposed into a symmetric part and a skew-symmetric

part:

Q=LRL=LCL'+LTL.

It follows that the DEDICOM model is an additive scalar product model; the model is the
sum of an oblique factor model for the similarity part and a skew-symmetric function of the
factors for the dominance part.

In Nosofsky's terminology, the model can be viewed as an asymmetric similarity
model with a scalar product similarity function as the symmetric component and an
asymmetric similarity function for the skew-symmetric part without row and column bias.

There is a rotational indeterminacy in the model. This rotational indeterminacy may
be used to rotate the matrix with loadings to obtain a simple diagram. The matrix L may be
rotated it we pre- and postmultiply R by the inverse of the chosen rotation matrix. A
convenient choice of a rotation matrix is the matrix with singular vectors of the SVD of the
matrix T. If the matrix L is rotated by this rotation matrix the diagram of two dimensions
can be interpreted as follows: the angle of two vectors multiplied with the obliqueness of
the axis corresponds to the symmetric part of the matrix Q, and the area of the triangle

corresponds to the skew-symmetric part of the model as in the SVD method of section 2.4.
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If we choose this rotation matrix, the matrix R is symmetric except in its 2 by 2 diagonal
blocks. The first dimension is asymmetrically related to the second dimension and not to
any other dimension. Of course the SVD of the matrix T remains interesting in its own right
because a plot of the singular vectors shows graphically how the dimensions are related
(see section 2.4)

If we have a two-dimensional solution there is another useful rotation. This rotation
method shows the close relationship with the SVD of section 2.4. First, we compute the
eigen decomposition of the matrix C = KAK'. Second, assuming the inverse A~1/2 exists,
the matrix L is rotated with the scaled eigen vectors KA-1/2 of the symmetric matrix C. The
matrix T is a 2 by 2 skew-symmetric matrix that can be written as tJ, where 7T is a scalar
and J = ((1) i (1)) The matrix T is rescaled by this rotation with values A;A,. Using this
rotation the matrix C reduces to the identity matrix. When the objects are plotted using the
coordinates of LKA~1/2, the area between the points and the origin corresponds to the
skew-symmetric part, while the angle between points corresponds between to the
symmetric part.

The two-dimensional DEDICOM model has been proposed under the name
ASYMSCAL by Chino (1978). The R matrix in Chino's method has a very special

structure:
R=o + ],

where @,[3 are parameters to be estimated, I is the identity matrix order 2 by 2 and Jis a 2
by 2 skew-symmetric matrix with one above the diagonal; the cell below the diagonal is

filled with -1. After the rotation of the two-dimensional DEDICOM described previously,

the R matrix of the DEDICOM model has similar structure with a=1. The models are
identical because we may rescale the matrix with loadings, if we adjust the R matrix by the

inverse of the rescaling factor.
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Algorithms for fitting the DEDICOM model are given by Kiers (1989) and Kiers et
al.(1990). An algorithm for fitting the off-diagonal DEDICOM model is given by Ten
Berge and Kiers (1989). This algorithm is nearly identical to Chino's (1978) algorithm, the

difference between these two algorithms is that the R matrix is estimated in different ways.

4.2 The slide vector model

The model to be discussed in this section can be viewed as a constrained version of

the unfolding model, which associates with each object i a row point x; and a column point
¥i. The unfolding model is a general model for rectangular data with two configurations X
and Y, for rows and columns respectively. The model can also be applied to square data
and as a consequence the model uses twice the number of parameters to account for the

asymmetry in the data. In particular, the dissimilarities are modeled by:

diiX;Y) =+ Zs (xis - ¥js )%,

where only the distances between points of different sets are compared; the distances within
each of the two sets are only implicitly defined. The model predicts symmetry if the points
x; and y; coincide. The unfolding model considers the symmetric and the asymmetric part
of the data as inseparable; see Coombs (1964) or Heiser (1981) for a discussion of the
unfolding model.

The slide-vector model (Kruskal 1973, cf De Leeuw and Heiser, 1982) is a
relatively unknown model that at first sight seems to be an extended symmetric Euclidean
model. The asymmetry is represented by adding a vector to the dimensionwise differences;

as a consequence the quasi-distance becomes asymmetric. This vector corresponds to a

shift or translation of the points in one direction. The squared quasi-distance, qiﬁ, is

written as:
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(Iiﬁ =25 (Xjs - Xjs + z5)2,

where z; are the elements of the slide vector z. It is not hard to verify that the model is a

special case of the unfolding model with yjs=xjs - z5. The construction of an asymmetric

distance is illustrated in Figure 2.

a-b

b-a

(b-a)+z

Figure 2: the slide-vector model

Two objects, a and b are depicted with their difference vectors and the distance is computed
by first subtracting the vectors (a-b; b-a); these difference vectors are of the same length but
with opposite sign. By adding the slide-vector, indicated by the vector z in the Figure, to

these difference vectors, and then establishing their length, an asymmetric quasi-distance
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dpq and dgp indicated by (b-a)+z and (a-b)+z is obtained. From Figure 1 it follows that
objects located in a direction similar to the slide vector dominates the other objects. The
sum vectors shows how the asymmetry is obtained in the quasi-distance.

If the square in the above equation for g;j is expanded and if terms are rearranged, it

becomes clear that this model distinguishes a symmetric and a skew-symmetric part:
41% = X5 (xis - Xjs )2+ Xg 2§ + 2% zg ( xis - Xjs ).

From this decomposition it follows that the model assumes points laying far apart to be

more asymmetric than points laying close together on a dimension. The term
25z (Xis - Xjs )

is skew-symmetric, a property that is difficult to recognize in original form of the model.
The skew-symmetric part of the model is compensatory, because the total difference may
vanish if large differences on the first dimension are compensated for by differences with
opposite sign on the other dimensions.

This skew-symmetric part of the model corresponds with the vector model for
preference data proposed by Tucker (1960). It implies that points with the highest
projections on this vector are preferred over the other objects. For this reason the slide
vector could as well be called a preference vector. In the context of asymmetry it means that
the objects with high projections are more often associated with the other objects than the

reverse. Figure 3 tries to illuminate this aspect of the slide vector model.
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DIMI slidevector

DIMII

Figure 3: Joint representation of the symmetry and asymmetry

In Figure 3 four objects A, B, C, D are depicted as points in a two-dimensional space. The
dashed lines in the Figure correspond to the projections of the objects on the slide vector.
Objects with high projections dominate objects with low projections. In this example object
A dominates the other objects. The distances among the points can be interpreted as the
similarity or resemblance of the objects; object C is more similar to object D than to object
A.

The slide vector has the desirable property that the asymmetry is related to the
dimensions of the configuration. In Figure 3 the asymmetry is related to both dimensions
of the scaling solution. The slide vector model is a special case of the similarity-bias model
with the squared Euclidean distance and a constant as a similarity function and with row

and column bias parameters that are a linear combination of the dimensions.
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5. Discussion

Asymmetries in proximity data can be modeled in a different number of ways, and
this paper has shown that a number of these methods are special cases of a general hybrid
model. More in particular, these models were discussed in the similarity-bias framework
provided by Nosofsky (1991) and it was shown that other models could be added to this
framework (Weeks and Bentler, 1982; Okada, 1988 a,b; Saito, 1986; Levin and Brown,
1979; Cunningham (1978) and Young, 1984). The importance of asymmetric similarities
was already recognized in psychometrics (Tversky, 1977; Harshman, 1982; Chino, 1978)
although not always under that name. Asymmetric similarity models generally are
multidimensional, whereas similarity-bias models are in general one-dimensional. Although
we focused our attention on asymmetries, it was noted that the general hybrid model
accommodates high centrality data as well. This can be an advantage over the existing
symmetric MDS models.

Our point of view that asymmetric proximities can be regarded as a function of
similarity and dominance is often only implicit in the model; the decomposition into
symmetric and skew-symmetric components revealed that many different models assume
dominance to arise from a linear function. This is a rather unfortunate state of affairs
because the skew-symmetric part of the data may be as complex as the symmetric part.
Although we used the term dominance as the generic name for skew-symmetry, in
applications it can frequently be interpreted as a concept reflecting certain other aspects of
the stimuli. Examples from identification confusion experiments are prototype, easily
encoded stimulus, good stimulus and so on. Some models have been defined where
dominance is explicitly related to theoretical concepts as is the case in the distance density
model and the feature matching model.

The decomposition of an asymmetric matrix into a symmetric and a skew-

symmetric matrix thus provides a good rationale for decomposing model parameters. The
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similarities and differences between the methods in terms of the untransformed data are
more easily seen from this point of view, and, in a number of cases the data can be more
easily interpreted. Some models represent skew-symmetry in the data by symmetry and
skew-symmetry parameters jointly, while a logarithmic transformation of the odds showed
that the symmetric parameters in the skew-symmetric matrix vanished. Note that this is
only a matter of transformations, and the choice of the specific decomposition. The
decomposition justifies separate analysis of symmetry and skew-symmetry from a data
analysis point of view. Theoretically it may be interesting to combine information from
separate analysis afterwards. However, the linkage between symmetry and skew-symmetry
may or may not exist, this is an empirical question.

We conclude our paper with the remark that Tversky's (1977) challenge of the
standard MDS model has been very influential and it has helped viewing asymmetry as a

systematic phenomenon.
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