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Abstract

Points of view analysis (PVA), proposed by Tucker and Messick in 1963, was one
of the first methods to deal explicitly with individual differences in multidimensional
scaling, but at some point was apparently superceded by the Carroll and Chang
INDSCAL model. This paper argues that a points of view analysis deserves new
attention, especially as a technique to analyze group differences, and a streamlined
version of the Tucker and Messick procedure is proposed. The separate components in
the original procedure are integrated into a comprehensive least squares loss function
that is minimized through a convergent algorithm. In addition, two types of nonlinear
transformations are incorporated, either with respect to dissimilarities, or for variables
from which dissimilarities are derived. Various applications are discussed, where the
two types of transformation can be mixed in the same analysis; a quadratic assignment

framework is used to evaluate the results.

Key words: points of view, individual differences, group differences, nonlinear
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1. Introduction

Points of view analysis as proposed by Tucker and Messick (1963) was one of the first
methods that sought a compromise between two approaches to the multidimensional scaling
(MDS) analysis of dissimilarity data for objects or stimuli obtained from different individuals
(sources). One approach was based on group averages, where groups were chosen a priori;
the other was an analysis on an individual level. The objective of a points of view analysis is
to obtain different multidimensional spaces for different groups of individuals, each having a
particular viewpoint about the object interrelationships. Before summarizing the Tucker and
Messick approach, and the issues that were raised with respect to the procedure, some
preliminary notation must be given.

Dissimilarity data are available for N objects, obtained from M > 1 different sources or
individuals, m = 1,...,M. The dissimilarity data may be represented in two different forms; the

first is a symmetric matrix A, = {5;;,,}, of order NxN, containing the dissimilarities Sijm

ijm}
between pairs of objects (i} aécording to source m. We assume A, is normalized so that the
sum of squares of the elements is 2N. The alternative representation is a vector §,,, of order /,
where [/ = N(N-1)/2, containing the dissimilarities dijm for each object pair for which
i < j; here, the sum of squares of the elements is set equal to N.

The index set {1,...,M} is assumed to be partitioned into subsets J, s = 1,...,r, giving the
sources that form the sth point of view; M s indicates the number of indices in J 5 For each of
the r viewpoints we wish to find a representation space X ; the dimensionality of X is
assumed to be pg, and the rows of X give the coordinates for the N objects in the

representation space for viewpoint s.

A squared distance between a pair of objects {iyj} in X is defined by
d3(X,)) = (e, — )X Xi(e; — ¢,

where e; is the ith column of the NxN identity matrix I. Applying the squared distance

function, D2(-), to map coordinates, Xs, into squared distances gives the matrix formulation:

D2(X,) =al' + la; - 2X X!

578



with 1 an Nx1 vector of all 1's and s an Nx1 vector containing the diagonal elements of
X X..

Given these preliminaries, the following steps can be distinguished in the original Tucker
and Messick (1963) procedure. The dissimilarities are represented in the vectors 8,,, and are
regarded as variables that can be subjected to a principal components analysis (PCA) to give
principal component scores in 7 dimensions, 1 <r <M, where r denotes the assumed number
of different points of view. Each principal component gives a weighted average (linear
combination) of the original M dissimilarity variables. Since the principal axes orientation may
not be the most appropriate one for displaying different viewpoints, a rotation to simple
structure is sought. Transforming the weights obtained in the PCA accordingly, gives a rotated

component, denoted as

ms-m’

M
0s=M'1Z a8
1

s = 1,...,r, where a, . is an element of the transformed weight matrix A = {an;s} that

s

represents simple structure. Next, the weights in A are used to obtain

M
0, =M1 )2 B
m=1

s = 1,...,r, where each ©; is a differently weighted average (linear combination) of the
matrices A,,. The final step proposed in Tucker and Messick (1963) consisted of r separate
multidimensional scaling analyses fitting Euclidean distances D(Xj) to each of the €.

Ross (1966) criticized the method; among other things, he focuses on the possibility that a
point of view might not be a linear combination of judgements of subjects. Cliff (1968), who
reviews the method favorably, argues that this criticism can be refuted by realizing that Ross
misinterprets the intention of Tucker and Messick with respect to what a point of view really
is: it is not a way of looking at the objects, but it is a structure for the objects obtained by an

MDS. Another objection by Ross concerns the fact that an arbitrary linear combination might



give negative weights for the dissimilarity sources, and could result in a dissimilarity matrix
for which no Euclidean solution exists.

Carroll and Chang (1970) proposed the INDSCAL model as an alternative to points of view
analysis; the INDSCAL model does not fit weights to the dissimilarity sources, but fits
weights for the dimensions of an unknown space X common to all sources. Carroll and Chang
state that PVA is little more powerful than doing separate scalings, and question the fact that
no explicit assumptions are made about the possible communality of the multidimensional
structures. Since its introduction, the INDSCAL model seems to have become the dominant
model to analyze individual differences. Yet, it is the purpose of the present paper to show
there is still room for the PVA model, explicitly when one is interested in finding subsets of
individuals (clusters of sources) that have the same frame of reference. PVA is truly different
from doing separate scalings since we do not wish to assign the sources to points of view a
priori; instead, we will perform a clustering task that assigns the sources to different points of
view. With respect to the issue of weights possibly being negative, it is guaranteed in the
procedure described below that the weights are always positive; moreover, they turn out to be
Tucker's (1951) congruence coefficients between each separate dissimilarity source and the
distances fitted in the point of view.

In the INDSCAL model, individual differences are defined on dimensions of the common
space; points of view are defined on the distances, and the spaces can, but need not, be
interpreted in terms of dimensions. It is also possible to look at clusters, structures, or more
and other directions than the principal dimensions. The concept of separate point of view
spaces will be considered as an alternative for the INDSCAL common space. When the data
are truly high-dimensional, the INDSCAL model might require many dimensions in the
common space, and in that case, a representation in a number of different points of view, each
having only two or three dimensions, might be much easier to interpret visually. In the
INDSCAL model the dimensions are not assumed to be uncorrelated; in points of view

analysis the distances in the fitted structures are not assumed to be uncorrelated. Whether



multiple points of view are reélly different or actually very similar can be investigated by using

quadratic assignment procedures, as discussed, for example, in Hubert (1987).

2. A Comprehensive Objective Function for Points of View Analysis

In the previous section it was shown that points of view analysis deals with three different
tasks: the first is to find principal components and weights applying the PCA model to given
dissimilarity variables; the second is to find an optimal rotation to simple structure, and the
final task is to find optimal representation spaces for the objects on the basis of the rotated
components (the composite dissimilarities). In this section a least squares loss function will be
introduced that integrates these different optimization tasks. The loss function is defined on the
distances in the representation spaces, and thus fits into the STRESS framework, for which
Kruskal (1964a,b) has laid the foundation.

If 112 denotes a least squares discrepancy measure such that
* * , *
lla, A, —DX)I2 =1tr (a, A, — DX))'(a,,A,, - DX)),
the PVA loss function can be written as

r
*
STRESS(AAT,...A Xy, X,) =M1 X ila, A¥ ~DX)IZ, (1)

s=lmelg

which is a function of three sets of parameters. For the moment, consider AT,...,A :4 as
given, so without loss of generality A’:n =A,; then the loss function has to be minimized over
the weight matrix A and the points of view X,....X,. Since a perfect, but trivial, solution is
easily obtained by setting A = 0 and X_ = 0, we require, without loss of generality, that
tr (X;X;) = 1. The loss function must also be minimized over A = {a,,;) € Q, where Qs the
set of all restricted weight matrices that give some form of simple structure.

The objective function in (1) will be minimized by constructing a convergent algorithm
using various components from the majorization approach to multidimensional scaling (De
Leeuw & Heiser, 1980; Meulman, 1986; De Leeuw, 1988). In the following, the components
will be discussed.



Fitting the Multidimensional Structures

The overall minimization problem in (1) can be partitioned into several parts. First of all,
for fixed A and A} ,...,A y, the problem of finding Xj....,X, consists of r separate MDS

tasks. For each point of view we have to minimize

STRESS(X)) =M1 X lla, Ay — DXIZ, )

mEJs

which is a function of X only. The objective function (2) can be simplified in the following
way. Define the composite dissimilarity matrix for the sources that constitute the sth point of

view as

—am-l
0,=M! X a, A
mel s

then (2) can be written as

STRESS(X) =M1 [( X 1lla,, A} - ©I2) + M, 1185 DX )I?], 3)

melg
where M indicates the number of sources assigned to viewpoint s. The first term on the right-
hand side of (3) gives stress due to heterogeneity of sources within point of view s; the second
term gives the group stress, with respect to the optimally aggregated dissimilarity matrix ©;.
Because the loss due to heterogeneity is a constant term with respect to X, (3) is minimized
by minimizing 110 — D(X s)||2 over X . The latter can be done by using the majorization
algorithm for MDS in its simplest form (e.g., see De Leeuw, 1988). For each representation

space X we compute, from a starting point X?, the Guttman transform X

X, = nIB(X9)XO. @)
The elements of the NxN matrix B(X?) can be defined in terms of the elements of two
auxiliary matrices: the NxN matrix, B°(X?), whose elements are

b(X9) = M;! ,,,g} s B/ d(X), i i and dy(X,) # 0,

bg.(X?) =0 if d(X9) = 0,

and the NxN diagonal matrix B*(X$), with diagonal elements



b;(X9) = 1'BAXDe;.

Then,
B(X9) = B¥(X9) - B(X9).

The theory of the majorization algorithm for MDS guarantees that
e, - DX)I? <1l@ - DXIIZ,

so by repeatedly computing the Guttman transform, and setting X9 = X ¢ for each new update,
a series of convergent configurations is obtained, until STRESS(X?)—STRESS( X s) < g, with
€ some preset small value, and the (possibly local) minimum of (3) is achieved.

Because the minimization of (3) is only a part of the overall problem (1), there is no need to
converge to the minimum in each step of the algorithm that updates the representation spaces;
for each representation space, a single Guttman transform X ¢ suffices to decrease the loss in
(1), and when STRESS(A;AT ..\ ;4 ;X[».--»X,) has attained its minimum with respect to the

preset small value €, so must STRESS(X).

Assigning the Sources to Different Points of View

The second step in the algorithmic scheme should minimize (1) over A € €, for fixed
AT sl ;4 and Xy,...,.X,. In this paper, we explicitly require that the index sets J ¢ are
mutually exclusive, so that each dissimilarity source contributes to only one point of view, but

other approaches are also possible. To solve for A, we first construct A, minimizing

r M
STRESS(A) =M1 X El li(2,, Ay, — DX I,

s=1m=

over A unrestricted. By setting the partial derivatives with respect to a,,; equal to zero, we

obtain
2,,, = N1 1r (A D(X). ®)

(The dissimilarity matrices were assumed to be normalized so that the sum of squares of the

elements is 2NV.) The estimates in (5) are positive by definition, and because tr XX =1,



the sum of squares of the elements in D(X)) is equal to 2N, so that (5) gives Tucker's (1951)
congruence coefficient between the individual dissimilarities and the distances in the sth point
of view.

When each source is assigned to only one point of view, the index set {1,...,M) must be
partitioned into non-overlapping subsets; in that case the constraints on the weight matrix A
can be written in the form A = WG, where W is a diagonal matrix, of order M x M, containing
a single weight w, for each source A:; on its diagonal, and G is a binary and orthogonal
matrix, of order M x r, that assigns each source A:, to one of the r viewpoints. So we

inimize
IA - WGII2,

over W and G. This function, which finds non-overlapping clusters of dissimilarity

%k
sources A

m» can be fitted row after row. The diagonal elements of W are found as

Wom = max(ﬁml,...,amr); in the (unlikely) case that some values in the mth row of A are

exactly equal, we would need an "untie" procedure. Next, G is obtained by setting G, = 1 if

a and Gms = () otherwise, and the restricted weight matrix is set to A = WG.

ms = wmm’
3. Nonlinear Generalizations

In the previous section it was described how the general loss function (1) is minimized over
X/,--.X, and A; in this section nonlinear generalizations (i.e., finding the optimal A’;l) will be
discussed. There are two different approaches. First, the relation with Gifi's (1990) approach
to nonlinear principal components analysis will be considered; it will be shown that this
approach, when applied to distance variables, reduces to nonmetric scaling. Next, a second
form of transformation will be proposed, originating from the distance approach to nonlinear
multivariate analysis (Meulman, 1986). Finally, the two possibilities will be combined.

In Gifi (1990) a system of nonlinear MVA techniques is developed that has the notion of
homogeneity as starting point. In a principal components analysis, the NxM data matrix Z is

analyzed, whose columns are defined by Nx1 vectors zZ,, m=1,...,M, that contain obser-



vations on the variables assumed to have means of zero and sum of squares of one. The
measurements on the objects for the M variables define the rows in Z. In the Gifi system, a

nonlinear PCA in r dimensions can be written in the form of the loss function:

r M
STRIFE(Qy s UppiXpoenrX sA) = M1 2 Xl q,, —x12, (6)

s=1m=1

that has to be minimized over X = {x,,...,x, }, constrained so that X'X =1, over A = {a,,},
and over q,...,q,y, satisfying q,q,, =1 and q,, € I, where I, indicates the set of
admissible transformations of the given variable z,,.

The class of transformations may be defined differently for each variable z,,, and includes
nominal transformations (that preserve equal values in z,, by giving ties in q,,), monotonic
transformations (that maintain the order of the elements of z, in q,), and linear
transformations (which implies setting q,, = z,,, since it was required that q,,q,, = 1). The
loss function says that each weighted transformed variable a,, q,, should resemble the
unknown x; as closely as possible, where x; turns out to be the normalized sth principal
component (Gifi, 1990, ch. 3)

Transformation of the variables in PCA can be applied straightforwardly to points of view
analysis, when the latter is regarded as a components analysis of dissimilarity variables. When
6:1 denotes the optimal transformation of a given dissimilarity variable §,,, then (6) could be
viewed as a nonlinear variety of the original PVA procedure (Verboon & Van der Kloot,
1989), replacing q,, by 6:1 and x; by 8. The weight matrix A will in general not give a
simple structure, but as is remarked in Gifi (1990, ch. 4; ch. 10), it is possible to generalize
(6) to restricted {a,, ], requiring, for instance, some a,,  to be zero.

When the variables are dissimilarities, the components x are optimal with respect to
replacing the M variables 6:1 by a fewer number of (latent) dissimilarity variables. The
particular linear combination, however, will in general not be optimal for the final step in a

PVA (i.e., obtaining a low-dimensional space in which the distances between the objects



10

resemble the composite dissimilarities in x; as closely as possible). Therefore, we propose to

find optimal distance components, minimizing

r
STRESS(8],....8 5 X 1 X sA) =M1 E X lla 87 —d(X)I?, @

ms-m
s=1 mel;

satisfying 8:;8 :1 =N and 8:‘" € A,,. Here, A, denotes the set of admissible transformations
of &,,; when the variables are dissimilarities, A,, is typically chosen as a set of monotonic
transformations. The vector d(X) = {dij(Xs) for i < j) contains the lower diagonal elements of
the matrix D(X) in some predetermined order, so (7) is a special case of the general loss
function (1).

Including general monotonic transformations of the dissimilarities has brought us to the
domain of nonmetric multidimensional scaling, originating from Shepard (1962a; 1962b) and
Kruskal (1964a; 1964b). In fact, the KYST program (Kruskal, Young, & Seery, 1973) can be
used to fit a single point of view; (7) creates the possibility of multiple points of view by
applying cluster restrictions to A.

The transformed dissimilarities are called pseudo-distances, and are usually restricted to be
monotonic with the given vector &, . When Sm denotes the unrestricted estimate, obtained by

setting partial derivatives with respect to 8:; in (7) equal to zero,
§,=dX)/a, ifmel,

Next we minimize
18, — 8112,

satisfying 8:8 ;; =N, over d;';l € A,,, where A, denotes the set of admissible monotonic
transformations of §,; A,, can be chosen as the set of general monotonic transformations as in
Kruskal (1964a,b), but another possibility is to choose A,, as the set of monotonic spline
transformations of a particular degree, with a prechosen number of knots, as in Ramsay

(1982a,b).



11

The second nonlinear generalization is of a different nature. Going back to (6) in the

analysis of the data matrix Z, instead of approximating a directly, we approximate

qum

D(a ), the distances that a weighted variable generates. This approach is in line with

qum

Meulman (1986), and applied to PVA it implies the minimization of

r
STRESS(qyse.slppi X oo X,A) =M1 Z 2 D@

s=1 mEJS

)= DX IR. ®)

ms qm

Due to the homogeneity of the Euclidean distance function, D(a,, q,,)

= a,, D(q,,), and by
setting A:‘n =D(q,,), (8) turns into another special case of (1).

The optimal transformations of the variables are obtained by the following procedure,
derived from the majorization algorithm for MDS with restrictions on the configuration (De
Leeuw & Heiser, 1980). In the minimization of (8), the representation spaces X ¢ generate
target values dij(X 5) that have to be approximated, and q,, is considered a restricted one-
dimensional configuration. When ¢, denotes a starting point that satisfies the constraints, the
unrestricted estimate am is obtained by computing the so-called reversed Guttman transform
(Meulman, 1986) defined by analogy with (4) as

4, = n1B(@5)a,
where

B(q},) = B*(q3) - B%(q5).

Here the elements of BO(¢0) are given by

bg(q?n ) =dii(X,) / dif(qC) if m €J, i#j and d;j(qS) # 0;

b3(qp) =0 if di(q) = 0,
and the diagonal elements of B*(q,) as

* t
b,','(q?n) =1 Bo(q?n)ei'

The basic theory of the majorization algorithm says that



12

lla,, D@,,) - DX I < lla,, D(G2,) - DX I

Using the results from De Leeuw and Heiser (1980), it can be shown that also

lla,,, D@,,) ~ DX II2 < lla,, D(¢S,) - DX I,

when

g,, = argmin llg,, - q,,112,
where the minimization is over q,, € T, , satisfying q,q,, = 1, with I', the set of all
admissible transformations of a given variable z,,. As in (6) the transformations may be
nominal (preserving ties), monotonic (preserving order), or linear (setting q,, =z, ). The
normalization q,q,, = 1 is equivalent to 8% &* =N and ZiEj 8;';%” = 2N.

In this application of PVA, the sources A:, are generated by the variables, the columns of
the transformed multivariate data matrix Q = {q,,...,q,}, and different subsets of variables
are assumed to generate different viewpoints about the interrelationships between the objects,
the rows of Q. The weights in A could be viewed as a replacement for the squared component
loadings in an ordinary principal components analysis, and their means as equivalent to the
eigenvalues,

Combining (7), where dissimilarities are transformed, and (8), where variables are
transformed, in the form of the general objective function (1), creates the possibility of
analyzing mixtures of data that consist of dissimilarities and multivariate data for the same set
of N objects. If a multivariate data matrix Z is available at the outset, we still have the choice of
considering each A:‘n either as a monotonic transformation of D(z,,), or as D(q,,), with either

nominal, ordinal, or numerical transformations for q,,.

4. Points of View Analysis in Action
To discuss the properties of PV A as presented in this paper in more detail, data will be
analyzed that have been obtained from a questionnaire study among the members of the

Second Chamber of the Dutch Parliament in 1979-1980 (the data were kindly made available
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by the Department of Political Science of the University of Leiden). In this study, 139 of the
150 members of parliament (MP's) participated; they belong to 11 different political parties,
and a short description is given in Table 1. From the extensive questionnaire, several variables
have been chosen for different applications of PV A, the data always pertaining to the same set
of 139 MP's. The parties in Table 1 have been ordered by using averages within parties
derived from a variable that gives the position that the MP's assigned themselves to on a

political left-right scale, with a range from 1 (extremely left) to 9 (extremely right).

TABLE 1
Political Parties in the Dutch Parliament in 1979-1980,
Party Membership of the Respondents, and Mean Self Rating within Parties
on the Left (1)-Right (9) Scale in the Questionnaire

Nr. of Mean
Label Party Description Respondents Left-Right
CPN Communists 0
2 PSP Pacifistic socialists 1 1.00
3 PPR Radicals 3 1.33
4 PvdA Social democrats 53 2.70
5 DS70 Social democrats (economically conservative) 1 3.00
6 D66 Liberals (economically progressive) 8 3.25
7 ARP Protestants 12 4.00
8 KVP Catholics 24 4.21
9 CHU Protestants 9 5.00
10 VVD Liberals (economically conservative) 25 5.04
11  GPV  Very conservative Calvinists 1 7.00
12 SGP Very conservative Calvinists 2 8.50
BP Farmers Party 0

CDA  Merger of ARP, KVP and CHU

In the first application, data are analyzed that were expressed in values on so-called
sympathy scales, ranging from O (extremely unappealing) to 100 (extremely appealing): each
MP gave a score to each of the parties residing in Parliament in 1979 (described in Table 1). In
the second application, data are used that give the MP's position with respect to 8 political
issues, measured by self-ratings on a 9-point scale. The lower and upper end of the scales for

the political issues is given in Table 2, as well as the marginal frequencies of the categories.
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TABLE 2

Political Issues in the Questionnaire

Issue Lower End (1).ccccuvviieiiviniinennn. (9) Upper End
1 Develop- The government should The government should
ment aid spend much more money on spend much less money
development aid on development aid
2 Abortion The government should Every woman has the
prohibit abortion under right to decide for
all circumstances herself on this matter
3 Law & The government takes too The government should
Order rigorous measures against dis- take even more rigorous
turbances of the Queen's peace measures
4 Income The differences in income The differences in
Differences  should remain as they are income should become
much smaller
5 Employees' Only management should Employees should have
Participation decide in matters that concern their say in decisions
the company
6 Taxes Taxes should be raised so Taxes should be lowered
that more money will become so that everybody can
available for public provisions decide for him/herself
7 Armies The government should insist The government should
on reducing armed forces, even  maintain strong armed
if this would imply risk forces.
8 Nuclear The number of nuclear power Nuclear power plants
Energy plants should be increased should not be built at all
rapidly
Marginal Frequencies of Categories
Issue 1 2 3 4 5 6 7 8 9
1 29 35 25 20 24 2 3 1
2 3 14 6 7 11 7 16 28 47
3 6 11 23 23 46 14 12 3 1
4 1 4 1 9 12 23 31 34 24
5 0 1 0 3 9 10 28 45 43
6 11 11 29 23 25 19 14 5 2
7 16 13 17 21 25 12 16 7 10
8 2 3 10 18 24 12 20 27 23
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In the interpretation of the results, the skewness of some of the distributions of the MP's over
the categories should be taken into account.

Analysis of the Sympathy Scales

The first application concerns the sympathy data. Here we wish to investigate whether
members of parliament being in different positions in the political spectrum possibly have a
different system of sympathies towards the other parties. To explore this question, the MP's
are considered judges of the interrelationships between the political parties, so we have to
consider the MP's as the columns of the data matrix or the variables, and the parties as the
rows or the objects. This implies we have 139 dissimilarity matrices, one for each MP, of
order 14 x 14, since there are 14 different parties judged (there are 3 more parties than the
number of parties for which we have MP's, because the CPN and BP MP's did not participate
in the questionnaire, and the CDA only acts as a stimulus party, since it is the result of a
merger between the ARP, KVP and CHU). We chose to define D’;‘,l as D(q,,) as in (8) to find
a transformation of the variables; although other monotonic transformations of the data in z,,
could have been considered, to obtain smooth transformations, we chose to define I',, as the
set of monotonic spline transformations (as in the approach to PCA in Winsberg & Ramsay,
1983; Ramsay, 1989). Second-degree splines with one interior knot were used, which fixes
the number of parameters fitted for each sympathy scale to be equal to three.

Two points of view were considered; a single point of view clearly did not fit the data, and
two points of view were considered sufficient in terms of goodness-of-fit. The mean weight
(that replaced the average eigenvalue) is 0.901, the group stress in (3) is 0.012 for the first
viewpoint and 0.026 for the second viewpoint, and the stress due to heterogeneity within
groups is 0.058 and 0.087, respectively. Table 3 gives the distribution of the MP's over the
two points of view, and weights and badness-of-fit values that have been averaged over
sources that belong to the same political party. The overall stress value, described in (1), is the
sum of the partitioned stress values that are given in (3), and is equal to the weighted sum over

parties, divided by M, the total number of sources.
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TABLE 3
Distribution of MP's over Two Points of View, Mean Weights and
Partitioned Loss: Total Stress = Heterogeneity + Group Stress

First Point Second Point
of View of View
Mean Mean Hetero- Mean Mean Hetero-

Source _#  Weight Stress _geneity _#  Weight Stress _geneity
PSP 1 0.886 0.215 0.170 0
PPR 3 0930 0.135 0.112 0
PvdA 52 0930 0.133 0.113 1 0.948 0.101 0.106
DS70 0 1 0.883 0.221 0.157
D66 7 0.857 0.263 0.199 1 0.846 0.284 0.191
ARP 0 12 0.884 0.216 0.165
KVP 0 24 0914 0.162 0.135
CHU 0 9 0.927 0.140 0.124
VVD 1 0.843 0.289 0.216 24 0.850 0.275 0.197
GPV 0 1 0.930 0.134 0.118
SGP 0 2 0.806 0.348 0.235

Total Hetero-  Group Mean

Stress geneity Stress Weight
First point of view 0.070 0.058 0.012 0.920
Second point of view 0.113 0.087 0.026 0.885
Overall 0.183 0.145 0.038 0.901

The first point of view is defined by 64 sources and seems to represent the sympathy of the
MP's who, according to their self ratings, are left from the center in the political spectrum.
There are 4 exceptions: one member of the PvdA and one member of D66 are in the second
point of view, and so is the MP of DS70 (who, accordingly, might be considered not as left-
wing as the self rating suggests). Also, one member of the VVD, whose other 24 MP's are in
the second point of view, is in the first point of view. In the configurations for the point of
views, the objects are represented by 14 political party points.

The first point of view is displayed in Figure 1; it is made up by members of the PvdA (52
out of 64), and the MP's of the PSP, PPR, and D66 and could be called 'the left-wing point of
view'. The object point for the PvdA party is represented at the left-hand side of the Figure: on
the average, the largest sympathy in the first point of view is for the PvdA. Next, moving to
the right, there are two parties that are separated from each other in the second dimension: the
PPR that is more left-wing than the PvdA, and D66 that is more to the center. More distant are

the even more left-wing PSP, in the second dimension close to the PPR, and the more center
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ARP, in the second dimension close to D66; next follow the CPN and the VVD. Distances
become quite large between the PvdA on the one hand, and the denominational parties KVP,
CHU, GPV, and SGP, on the other. The CDA is located in between the three participating
parties (but closer to the KVP and CHU than to the ARP). There is also little sympathy for
DS70, which is understandable since it is a conservative secession from the PvdA, and there is
no sympathy at all for the very right-wing BP. The overall configuration can be captured in an
elliptical structure (as drawn in Figure 1); starting at the point for the CPN, and moving
clockwise along the ellipse in the direction of the PSP, the left-right order is recovered (see
Table 1). The VVD does not fit on the ellipse; there is more sympathy for the VVD in the left-
wing point of view than can be explained from the left-right scale. From a substantive point of
view, the political structure can easily be understood by looking at the distances between the
political parties, but the dimensions cannot be given a politically relevant interpretation.

Inspecting the data of the MP of the VVD who fits in the viewpoint, shows that this MP
orders the parties almost perfectly reversed compared to the average MP of the PvdA.
Compared to the average MP of the VVD, this MP has much less sympathy for PvdA, D66,
and ARP, and much more for GPV and SGP. The MP of the PvdA who does not fit into the
left-wing point of view, orders the parties with decreasing sympathy as (CHU KVP ARP
CDA) (GPV SGP) (PvdA D66 VVD) DS70 PPR (PSP CPN BP). A first conclusion might be
that the point of view analysis perfectly discovered a coding error in the party membership
variable; however, this is unlikely considering other data available, so perhaps it should be
concluded that this MP is changing his or her political affiliation.

Figure 2 shows the second point of view; it could be called the 'center-right-wing point of
view'. The majority of the MP's that adhere to this viewpoint belong to the parties that merged
into the CDA; MP's of parties that are more conservative also fit this viewpoint. One part of
the Christian democrats has great sympathy for parties that are more left-wing (PvdA and
D66), while the others have more sympathy to parties that are more to the right (VVD, GPV,

SGP, and DS70). There is hardly any sympathy for the small extreme left-wing parties PPR,
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Figure 2.
Second viewpoint in analysis of political sympathy scales:
Center-right-wing point of view.
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PSP, and CPN, and the extreme right-wing BP. The latter political parties fall outside the
ellipse that orders the parties from left to right when we start at the D66 point and move
counter-clockwise towards the ARP; in the center-right-wing point of view there is more

sympathy for the PvdA than can be explained from the left-right scale.

TABLE 4
Distances that Differ Most in the Two Points of View

First Point Second Point

Distance between of View of View
BP CHU 0.17 0.85
BP KVP 0.20 0.84
BP CDA 0.30 0.87
BP SGP 0.16 0.68
BP GPV 0.14 0.63
BP D70 0.18 0.61
CDA CPN 0.20 0.67
PvdA D70 0.77 0.14
PvdA GPV 0.79 0.17
PvdA SGP 0.77 0.15
PvdA CHU 0.78 0.20
PvdA CDA 0.65 0.22
PvdA KVP 0.75 0.19

The major agreement between the two viewpoints seems to be the antipathy towards the
BP. To compare them in more detail, Table 4 gives the distances between parties that differ
more than twice the average difference. In the left-wing point of view, the distances between
the extremely right-wing BP and CHU, KVP, CDA, SGP, GPV, and DS70 are small; in the
center-right-wing point of view they are large. The same is true for the distance between CDA
and CPN. It is exactly the other way around for the distances between PvdA and CHU, KVP,
CDA, SGP, GPV, and DS70; in the left-wing point of view they are large, and in the center-

right-wing point of view they are small.

Analysis of the Political Issues

In the second example a points of view analysis is applied that accommodates the two

different types of nonlinear transformations. The first question that comes to mind when




20

analyzing political issues, is whether they can be captured in a single point of view (dominated
by the left-right dimension), or do they need a second. To investigate the homogeneity within
parties at the same time, a variable indicating party membership was included in the analysis in
the following way. First an indicator matrix B was constructed, with N rows and 11 columns,
indicating for each MP to which of the 11 parties (s)he belongs. From the indicator matrix B,
dissimilarities between the MP's were derived; although any dissimilarity measure could have
been considered, the chi-square distance was selected that is also used in homogeneity analysis
(or multiple correspondence analysis). The particular use here is similar to Gifi's (1990)
approach to principal components analysis, being a mixture of PCA as in (6) and homogeneity

analysis. The squared x2- distance between two MP's i and j is defined by
1%(B) = (¢, ~ ¢)BM'B'(e; - ¢)) = d4BM /2, ©)

where the matrix M1 = (B'B)! is a diagonal matrix that has the inverse of the column
marginals of B on its diagonal.

Because all dissimilarities between MP's that belong to the same party are zero, and all
dissimilarities between the MP's of two different parties are equal, many ties exist in
D(BM12) = {xl?j(B)} 112 Therefore, the dissimilarities were transformed monotonically with
Kruskal's primary approach to ties that allows ties in the data to become untied in the
transformation. So the restriction is that within-party pseudo-distances remain smaller than
between-parties pseudo-distances, and that the latter are monotonic with the original chi-square
distances. By contrast, the 8 political issue variables were treated in a similar way as the
sympathy scales in the previous application: not the dissimilarity variables but the given
variables were optimally transformed to give distances D(q,,), using second-degree monotonic

splines with two interior knots.
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Figure 3.
Monotonic spline transformations for 8 political issues.

Figure 3 gives the transformation of the issue variables. It is important to scrutinize them,
because the values on the original scales were equally-spaced, but they will in general no
longer be through the monotonic spline transformations. When the transformation is a concave

function as for Development Aid, the lower end of the scale (much more money) is




22

emphasized, while the upper end (less money) is de-emphasized. When the transformation is a
convex function as for Employees' Participation, the lower end (only management should
decide) is de-emphasized; the upper end (employees should have their say too) is emphasized,
probably because this is not a very extreme statement. When the transformations are viewed
together with the marginal frequencies of the categories in Table 2, we see that the curves are
steep when the associated marginal frequencies are large, while the curves are flat when the
marginal frequencies are small (compare the concave function for Development Aid, with
marginal frequencies 29, 35, 25 for the categories 1, 2,3 and marginal frequencies 2, 3, 1 for
the categories 6, 7, 8); in short, it turns out that the optimal spline transformations follow the

cumulative frequency distributions very closely.

TABLE 5
Weights and Loss for Each Source, and
Partitioned Loss: Total Stress = Heterogeneity + Group Stress

First Point Second Point Loss in Applicable
of View of View Point of View

Source Weight Weight Stress _Heterogeneity
Law & Order 0.900 0.190 0.144
Income Differences 0.893 0.203 0.149
Employees' Participation ~ 0.829 0.313 0.202
Taxes 0.902 0.187 0.148
Armies 0.896 0.197 0.145
Nuclear Energy 0.893 0.202 0.147
Development aid 0.895 0.199 0.164
Abortion 0.901 0.189 0.158
Party Membership 0.933 0.129 0.068

Total Hetero- Group Mean

Stress geneity Stress Weight
First point of view 0.144 0.104 0.040 0.886
Second point of view 0.057 0.043 0.014 0.907
Overall 0.201 0.147 0.054 0.894

Two points of view arise from the analysis: the first is formed by the variables Law &
Order, Income differences, Employees' Participation, Taxes, Armies and Nuclear Energy, and
the second by Development Aid and Abortion; the monotonically transformed dissimilarities
that were derived from party membership go along with the second point of view. Table 5

gives the weights, the badness-of-fit values for each source, and the partitioned loss.
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Figure 4.
Analysis of political issues and party membership:
Multidimensional structure according to Employees’ Participation and Taxes
versus Income Differences, Nuclear Energy, Law & Order, and Armies

The first point of view is represented in Figure 4; the 139 MP's are represented by points
with the labels from Table 1 that indicate their party membership. Next, points are given for
the parties: these are the centroids of individual MP's who belong to the same party. Finally,
the political issues that constitute the first point of view are represented as vectors, whose
coordinates have been obtained through multiple regression, using the coordinates of the MP's
as independent variables and the optimally transformed issue variables as dependent variables.

The space is in principal axes position; since the eigenvalues are 0.85 and 0.15, there is a
very dominant first dimension. When the order of the parties along this dimension is compared
with the ordering from left to right in Table 1, it might be considered closely related to the left-
right continuum. (As in the first analysis, DS70 is positioned on the conservative side.) MP's
that are positioned left from the origin are more likely to feel that income differences should be

smaller, and nuclear power plants should not be built when compared to MP's right from the
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origin; also, they feel stronger that armies should be reduced, and that the government takes
too rigorous action against disturbances of the peace. Employees' Participation and Taxes do
not go along with the first dimension; various MP's of the VVD, for example, feel stronger

about Employees' Participation than a considerable number of MP's of the PvdA.
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Y 78 ‘
0.1
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3
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! 1 1
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Figure 5.

Analysis of political issues and party membership:
Multidimensional structure according to Abortion, Development Aid,
and Party Membership

Figure 5 gives the position of the MP’s according to Abortion and Development Aid; the
configuration is certainly not one-dimensional (the eigenvalues are 0.52 and 0.48). Abortion
separates the denominational parties GPV, SGP, CHU, KVP, and ARP (that feel that abortion
should be prohibited) from the parties that feel that every woman has the right to decide for
herself: these parties are the left-wing PSP, PPR, PvdA, and D66, but also the economically

conservative VVD and DS70. The extreme positions towards Development Aid are taken by
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the PPR and PSP (much more money), and DS70, SGP, and GPV (less money); hardly no
distinction is found between the ARP, CHU, KVP, PvdA, and D66. Inspecting the position
of the party points along the first dimension, we see that the position of the (conservative)
VVD is considerably different from its position in Figure 4.

As is clear from Figure 5, there is quite some heterogeneity within parties; this
heterogeneity can be inspected more closely through the transformed dissimilarities according
to party membership. Because ties were allowed to be untied, within-party pseudo-distances
will differ from the original zero dissimilarities, and large discrepancies from zero indicate
large heterogeneity. The within-party pseudo-distances were grouped into seven classes, and
the frequencies for each class computed. The cumulative frequency distributions (expressed in
proportions) are displayed in Figure 6 (the small parties were omitted from this graph).
Compared to KVP and CHU, PvdA and VVD are more homogeneous and ARP is less so,
while D66 displays a remarkable heterogeneity.

Although the party membership variable has been assigned to the second point of view, a
comparable graph (Figure 7) has been constructed for the first point of view, using pseudo-
distances computed for fixed weights and the configuration for the first point of view. As
could be expected, the overall heterogeneity is larger than in the second point of view; VVD,
ARP, and CHU are more homogeneous than PvdA and KVP, while D66 is again the most

heterogeneous.
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Cumulative frequency distributions displaying heterogeneity within parties,
derived from grouped within-party pseudo-distances.
Proportions (vertical axis) versus pseudo-distances (horizontal axis)
for the second point of view.
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Cumulative frequency distributions displaying heterogeneity within parties,
derived from grouped within-party pseudo-distances.
Proportions (vertical axis) versus pseudo-distances (horizontal axis)
for the first point of view.
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Are Multiple Points of View Really Different?

When two or more different points of view have been obtained, their possible similarity can
be investigated by the use of quadratic assignment procedures (see Hubert, 1987, for an
extensive review). In the analysis of the sympathy scales, the similarity between the two
spaces is captured in the correlation between the two distance vectors d(X,) and d(X,), which
turns out to have a very small value of 0.042. To estimate the probability of a correlation as
large or larger than 0.042 occurring by a random displacement of the points, the coordinates in
X, were permuted, with the number of random permutations set to 5000. The Monte Carlo
distribution is given in Table 6; the p-value is 0.314, thus there is no evidence of communality

between the two viewpoints.

TABLE 6
Monte Carlo Distribution of Grouped Correlations
Between Distances in First Permutation Study
Sample size of 5000, Observed Correlation is 0.042;

p-value = 0.314
Class f cf f/N cf/N
641 - 739 5 5 0.001 0.001
491 - 641 22 27 0.004 0.005
342 - 491 150 177 0.030 0.035
Jd92 - 342 408 585 0.082 0.117
042 - 192 987 1572  0.197 0.314
—-.108 - .042 2194 3766 0.439 0.753
-258 - —.108 1230 4996 0.246 0.999
-290 - -.258 4 5000 0.001 1.000

It was chosen to define the similarity between the two political issues spaces on the
similarity between the party points (the centroids of the MP's belonging to the same party).
Because the marginal frequencies (the weights assigned to the centroids) are very different, the
correlation has been computed taking these different frequencies into account. When the
centroids are givenin Y, = M'lB'X1 and Y, = M'lB'Xz, with B and M as defined in (9), then
the correlation is considered between d(BY,) and d(BY,). The observed correlation is 0.287;

the Monte Carlo distribution of the grouped correlations is given in Table 7; the p-value is
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0.109, so there is no strong evidence that the two sets of centroids are giving the same

structure.

TABLE 7
Monte Carlo Distribution of Grouped Correlations
Between Distances in Second Permutation Study
Sample size of 5000, Observed Correlation is 0.287;
p-value = 0.109

Class f cf f/N cf/N
496 - .683 79 79 0.016 0.016
287 - 496 466 545 0.093 0.109
078 - .287 1154 1699 0.231 0.340

-131 - 078 1834 3533 0.367 0.707
-339 - -.131 1386 4919 0.277 0.984
-473 - =339 81 5000 0.016 1.000

Application of the INDSCAL Model to the Sympathy Scales.

It seems that a basic difference between the PV A model and the INDSCAL model is that
INDSCAL fits individual spaces, while the PVA model fits group spaces. Of course, the
common space in the INDSCAL model, rescaled by using the average weight matrix, could
also be interpreted as giving dimensions of different points of view, but it might not be clear
how to combine dimensions into a point of view. This will be illustrated by reanalyzing the

sympathy scales with the INDSCAL model by minimizing the loss function

M
STRESS(X;A[,.Ap) = M’ Zl A, - D(XA,)I,
m=

over the common space X and the diagonal weight matrices A,,...,A, for given A’:n =D(q,),
with the latter obtained from the points of view analysis. A special purpose algorithm was
developed, based on the majorization approach detailed in Heiser and Stoop (1986). There is
some freedom to choose from different, but coherent, normalizations; because we wish the

common space to have an explicit shape, the common space was not normalized but instead
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the weights were normalized so that M-! Zm A2 =1 (this is equivalent to non-normalized
weights and normalized dimensions with sum of squares of one).

Since there were 2x2 dimensions in the points of view analysis, the INDSCAL model was
fitted with 4 common dimensions; the stress in the INDSCAL model is 0.145, so the 139
individual spaces (each using four parameters) fit the data only slightly better than the 2 point
of view spaces (using 1 parameter per source, with the total stress 0.183). The INDSCAL

stress equals 1-0.855, the sum of squares of the coordinates across dimensions (see Table 8).

TABLE 8
Correlations between INDSCAL and PV A dimensions
Dimensions Dimensions Rotated Rotated
First Point Second Point First Point Second Point
of View of View of View of View
INDSCAL _SSQ 1 2 1 2 1 2 1 2
1 0.301 -0.01 -0.71 098 -0.15 -0.13 -0.31 0.99 0.61

0.285 098 0.12 -0.07 -026 099 -0.83 -0.03 -0.23
0.136 -0.85 0.41 -021 061 -077 095 -032 0.26
0.133 0.16 0.04 066 063 0.16 -0.12 054 0091

W

The correlations between the dimensions of the INDSCAL common space and the 2x2
dimensions in the point of view spaces are given in columns 2-5 of Table 8. It is clear that
points of view analysis and INDSCAL have two dimensions in common; it is unclear what
happened to the other two point of view dimensions. Since INDSCAL is in its unique
orientation of axes, and the points of view are in principal axes orientation, correlations
between dimensions may be quite meaningless. Computing the correlations between the
distances in the two points of view and the distances derived from all possible pairs of
dimensions in the INDSCAL common space, shows that the INDSCAL distances derived
from dimensions 2 and 3 correlate 0.98 with the distances in the first point of view, and that
those in dimensions 1 and 4 correlate 0.97 with the distances in the second point of view.
Rotating the dimensions of the PV A spaces to these two pairs of INDSCAL dimensions gives
the correlations between dimensions given in the columns 6-9 of Table 8. Now it is clear that

points of view and INDSCAL do find the same structure.



30

0.2 -
0.1 —

0.0

-~
~
~

02 -

0.4
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(vertical axis) versus dimension 2 (horizontal axis). Dotted lines and ellipse
indicate the orientation of the left-wing point of view.
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Figure 9. INDSCAL analysis of political sympathy scales: dimension 4
(vertical axis) versus dimension 1 (horizontal axis). Dotted lines and ellipse
indicate the orientation of the center-right-wing point of view.
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The dimensions of the INDSCAL common space are displayed in Figure 8 (dimension 3
versus dimension 2) and Figure 9 (dimension 4 versus dimension 1). To compare the solution
with the point of view spaces, the elliptical structures drawn in the Figures 1 and 2 were
rotated to display the position of the axes of the point of view spaces. There is a strong
similarity, although not a perfect match; consider, for example, the different positions of PvdA
and D66 in the Figures 2 and 9. It is unclear, however, why INDSCAL uses its particular
orientation of the axes; there does not seem to be a substantive interpretation of the dimensions
of the common space.

5. Discussion

The primary purpose of this paper has been to show that the concept of points of view
analysis is worthwhile for the analysis of heterogeneous sources on a group level; since
sources may be homogeneous within groups and heterogeneous between groups, the strength
of the points of view analysis concept is in its parsimonious display of objects in r 2 2 points
of view, when it is possible to group sources into subsets because they share a particular
viewpoint about the objects’ interrelationships.

Tucker and Messick's original procedure was called an individual differences model; we
agree with Carroll and Chang (1970) that if the objective of analysis is individual differences
scaling, application of the INDSCAL model would be more appropriate, since individual
differences are displayed in separate spaces and each individual source has the possibility to be
distinct from all other sources. Although this is clearly a subject of further study, the
INDSCAL common space may not be the best way to display differences at the level of
groups, since the INDSCAL model, as a truly individual difference model, allows each
individual to weight each dimension of the common space differently. More restricted
INDSCAL models have been proposed, requiring, for example, that each individual source
may use only ¢ < p dimensions, where p denotes the dimensionality of the common space.
However, this restriction does not guarantee that sources in an intrinsically homogeneous

group will use exactly the same ¢ dimensions, because dimensions in the INDSCAL model are
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allowed to be correlated. Our conjecture would be that further restrictions on the INDSCAL
model to find homogeneous groups would lead to the PVA model.

Kiers (1989) discusses the relationship between various approaches to three-way scaling
from a different perspective. He notes there is resemblance in lay-out between Tucker and
Messick's original approach and the French method STATIS (based on Escoufier, 1973), but
finds them clearly different in several respects. From our perspective, the similarity is
obvious. The basic idea is the treatment of (dis)similarity matrices as variables from which
linear combinations are formed and subsequently subjected to a secondary analysis. In
STATIS the problem remains how to avoid negative weights in a subsequent linear
combination when the first composite matrix has been taken out. Another approach is found in
Escoufier (1988), who proposes to find non-overlapping subsets of variables to obtain
different composites, similar to the constraints placed on the weights in our procedure.

There is also a relationship with what is called 'homogeneity analysis as a first step' in Gifi
(1990, ch. 3), where r different quantifications of the categorical variables are first obtained
that are subsequently used to obtain r principal components analyses solutions in pj
dimensions. Related work on quantifying categorical variables in a three-way framework is
Saporta (1975), and the extensive review in Kiers (1989).

The procedure described in this paper could easily be generalized to allow sources to be
assigned to ¢ points of view, where 1 <t <r (giving overlapping clusters). When variables are
optimally transformed and assigned to more than one point of view, one could choose either
identical or possibly different optimal transformations with respect to the different points of
view. This extension, however, needs further investigation with respect to its data analytical
merits. Another possible extension would allow the given matrices A, to be asymmetric.

In the procedure described, the (dissimilarity) variables were assumed to constitute different
points of view, and differential aggregation over homogeneous sources was applied to obtain
different composite matrices optimal with respect to distances. It is important to realize that this

basic idea of differential aggregation is very general, and can be applied to any other
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multivariate analysis technique, as was indicated for the principal components analysis in (6).
Also, three-way generalizations to sets of variables are feasible; Verboon and Heiser (1990)
have applied a similar idea to the analysis of dynamic three-way data.

The present technique gives overall dissimilarity measures in 8y, as an aggregation over a
group of homogeneous sources. When the sources A:, are homogeneous at the outset, we
choose s equal to 1. Related work in finding such a composite matrix is given by Escoufier
(1980) and Gower (1971). A related procedure of differentially weighting variables to find an
optimal representation is found in De Soete, DeSarbo, and Carroll (1985), who
simultaneously estimate variable importance weights and the corresponding ultrametric tree.

The procedure proposed in the present paper combines aspects of the work just referenced;
it finds clusters of sources, and weights the sources differentially to find composite matrices.
The individual sources may be given directly or may be derived from numerical variables,
ordinal variables (for which a monotonic transformation is obtained) or nominal variables,
either by obtaining nominal transformations or by using indicator matrices. Although the
composite matrix O is optimal for least squares distance fitting, it could also be analyzed

afterwards by other techniques, for example by a cluster analysis.
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