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Generalised biplots
SUMMARY

A general but simple method of ordination is described that includes information on both
samples and variables; new samples may be interpolated into the ordination. The method allows
both continuous and categorical variables or mixtures of both types. It includes as special cases
classical linear biplots, non-linear biplots and, for categorical variables, a new form of multiple
correspondence analysis.

Some key words: Biplots; Non-linear biplots; Multiple correspondence analysis; Ordination;
Multidimensional scaling; Graphical methods.

1. INTRODUCTION

The classical biplot of a multivariate sample (Gabriel, 1971) is an established tool for the initial
exploration and display of both samples and variables, and relations between them. It is
intimately related to principal components analysis (PCA) and, therefore, depends
fundamentally on Pythagorean distance as a measure of inter-sample distance. The display of
samples is precisely that of PCA; the variables are represented by vectors emanating from the
centroid of the points representing the samples, that is from the point representing the sample
mean. Gower and Harding (1988) showed how the biplot idea could be generalised for any
inter-sample metric based on quantitative variables to give, as well as the usual ordination of the
samples, representations of the variables as non-linear concurrent trajectories (see §2.2). They
gave the details for Euclidean imbeddable metrics and ordination by classical scaling/principal
coordinates analysis (PCO), where algebraic analysis is tractable. In principle, any form of
ordination combined with any metric can be used, so long as there is some method for
superimposing new samples in the space of the ordination and so long as all variables are
quantitative.

This paper is concerned with a further generalisation, that removes the restriction to quantitative
variables. Just as PCA and Pythagorean distance are the basis of the classical biplot for
quantitative variables, multiple correspondence analysis (MCA) and chi-squared distance are the
basis for the classical joint ordination of samples and categorical variables. MCA is concerned

with the analysis of an n x p data-matrix X giving information on p categorical variates for each
P
of n samples. Often X is represented as an indicator matrix G with n rows and L = ZI k
k=1
columns, where ! k is the number of categories that the kth variable may take. In the following,
categories are referred to as category-levels to distinguish them from the categorical variables
themselves. In the ith row of G each of the / k columns associated with the kth variable is

assigned to one of the category-levels and is scored unity if that level occurs in the ith sample,



and zero otherwise. Thus the row-total of G for every sample is p, and the columns totals ck
(k=1,2,...,.L) of G give the frequencies of each category-level of each variable. The kth variable
cannot be represented by any form of trajectory but now must be represented by / k discrete
points.

The use of chi-squared distance is hard to justify when, as is usual, G is a sparse indicator
matrix - see Greenacre (1990) for a discussion of the limitations of MCA. There is therefore a
need to examine other approaches to the joint ordination of samples and variables described by
multivariate categorical variables. The methodology to be developed will cater not only for
categorical variables but also quantitative variables or mixtures of the two.

2. INCORPORATING CATEGORICAL VARIABLES
2.1. Ordination of the Samples

In this section, first some comments are made on the ordination of samples described by
categorical variables, and then it is shown how the non-linear biplot principle can be extended to
plot points, in the space of the ordination, that represent the category-levels.

An obvious approach to the ordination of samples described by categorical variables is to treat
the columns of G as L dichotomous variables and use one of the many similarity coefficients
(see e.g. Sneath & Sokal 1973) to derive a matrix of similarities or dissimilarities, which can
then be used as a basis of ordination by PCO, or any other form of metric or non-metric
multidimensional scaling. This is indeed a viable possibility but there are some pitfalls.

The most simple similarity coefficient to use is the Jaccard coefficient but, because of the
method of scoring G, matches get half the weight of mismatches. The simple matching
coefficient gives /k matches when the kth categorical variable matches and (/i — 2) matches and
two mismatches when the kth categorical variable mismatches. If one prefers equal weight for
matches and mismatches, two possibilities are:

(i) Use the coefficient, which in the usual notation is written
a

a+ 15(b+c)

which by giving half-weight to each mismatch, eliminates the mis-balance of the Jaccard
coefficient which lacks the factor-;-. Gower & Legendre (1986) show that for this

coefficient, V1 - sij 1s a distance imbeddable in a Euclidean space.

sij =



(ii) Use the extended simple-matching coefficient for multi-level categorical variables
(Gower, 1971). This contributes zero to the overall similarity of two samples if the kth
categorical variable mismatches and unity if it matches, and may be evaluated from the
entries of GG'.

The use of chi-squared distance in MCA generates a complicated weighting sytem which
depends on the frequency of each categorical level in the sample (see §4.3); this is avoided by
(ii), for which the algebraic details are developed in §4.2. The principle that I believe to be
important is that weighting should be explicit and adopted for specific reasons and should not be
implicit, obscure and dictated by intricate methodology; the generalised biplot gives control of
weighting.

2.2. Incorporating Information on the Variables

If one of the approaches to ordination suggested in §2.1 is adopted, how then can information
on the categorical variables be accomodated in the ordination diagram? A principal component
analysis of G implicitly uses the simple matching coefficient, and the variables can be
incorporated as in a classical biplot (Gabriel, 1971). However, we have seen that this coefficient
gives differential weights to matches and mismatches and so may not be what is required.

For quantitative variables, Gower and Harding (1988) showed how non-linear biplots may be
constructed for any dissimilarity coefficient and any ordination technique. Suppose X isann x p
data-matrix of quantitative variables, expressed as deviations from their means, and that a
dissimilarity djj is defined between every pair (i,j) of rows of X. Using the notation {ajj}, here
and throughout this paper, to denote a matrix with typical element ajj, an ordination of the
dissimilarity matrix D = {djj} consists in finding a set of coordinates Y (n x q) in q dimensions
that generate a distance matrix A = {Sij} that approximates, in some optimal sense, the
dissimilarities D. This is achieved by defining and optimising a loss-function/goodness-of-fit
criterion S(t(D),A). Here 1T represents a transformation, either given or to be determined from
the data, which may be applied to the original dissimilarities; often T is the identity
transformation, but polynomials, monotonic splines and montonic step functions are commonly
used. An additional p-variable sample x may be superimposed on an existing ordination Y to
give a point with coordinates y. This is done by optimising a criterion T(t(d),5), where d is the
vector of the dissimilarities between the new sample and the n original samples and § is the
corresponding vector of fitted values. The function T is now always given, though it may have
been determined empirically at the ordination stage. Superimposing an (n + 1)th point in this
way differs from a simultaneous ordination of all n + 1 samples (i.e. the originals augmented by
the new sample). For consistency, S and T should be the same function, though this is not



absolutely necessary and might be relaxed, for example, if the use of different functions was
found to be more efficient with little loss of accuracy. When S and T are the same function, the
superimposition process is said to be coherent with the ordination process.

Non-linear biplots depend on superimposing artifcially constructed pseudo-samples x. The
pseudo-sample x is defined to have zero values (representing the means) for all variables except
for the kth variable which takes a value p. As p varies, the locus of the superimposed point yp,
corresponding to X, traces a trajectory assosciated with the kth variable (k = 1,...,p). The
concatination of all p trajectories with the ordination Y defines the generalised biplot. The value
p=0, corresponding to x being a sample of mean values, is common to all p trajectories, which
are therefore concurrent.

The concept of a mean of categorical levels is not valid, so the role of zero values in the pseudo-
variable must be reconsidered if the process is to be extended. To address this problem,
consider the following bootstrap-like procedure. Construct a pseudo-sample by setting
X = (Xj1oeesXj(k-1)P5Xj(k+1)s0++sXj p)

and derive the superimposed point yp on the ordination Y. Do this for j = 1,...,n and take the
centroid of these n points. The trajectory for the kth variable is defined to be the locus of this
centroid as p varies and the p trajectories together with Y form the generalised biplot. This may
seem a somewhat arbitrary procedure, but it is shown in §3 that with ordination by PCO, and
with a wide class of measures of dissimilarity that are in common use, it leads to the non-linear
biplot for quantitative variables and, in §4, to a close relative to MCA for categorical variables.
At the same time it includes many new special cases, the details of some of which are developed
below, and admits mixtures of quantitative and categorical variables. That the procedure works
well in this important special class of ordination procedures, suggests that it is worth
considering with others and with non-Euclidean distances.

3. THE GENERALISED BIPLOT IN THE CONTEXT OF PCO
3.1. The Basic Results

The description of the generalised biplot given in §2 suffices for writing algorithms but gives no
insight into the method and does not establish any properties that might be found useful for
interpretation. To remedy this, algebraic analysis is desirable and this is most readily
accomplished within the context of PCO; fortunately even with this limitation there is much of
interest and there are many special cases of wide applicability.



Consider the nxp data-matrix X whose entries xjk now may be either quantitative or categorical.
Suppose also that squared-distance between the ith and jth samples is given by

P
df = Y fixik, xjk) @
k=1

i.e. each variable contributes independently to overall squared distance. The condition (1) is
commonly satisfied by dissimilarity coefficients, and simplifies some of the following algebra,
but it is not essential to the main argument. Let

P
D = (-d%) and Di = {- ¥(xik, xjk)) so that D = YDy,
K=1

and define the corresponding centred matrices
p
B =(@-N)D(I-N)and Bk = (I- N)Dg( - N) so that B= Y Bk
k=1

where N = ee'/n. Here, and throughout, e denotes a column-vector of units of length n, unless
otherwise specified by a suffix. Dk and Bk give distance and centred matrices for the kth
variable alone. When the n(n-1)/2 distances are imbeddable in Euclidean space the matrices B
and By are positive semi-definite. Let the spectral decomposition of B be given by:
B=YY', YY=A,

where A is the diagonal matrix of eigenvalues of B. We have that Be = 0 and hence Y'e = (;
thus the rows of Y give the centred principal coordinates of D. It follows that the squared
distances of each sample from the centroid of all samples is given by the elements of

. e'De €
vec(diag B) =2 2D;1- .

A new point, whose squared distances from the n points of the ordination are given in a vector
f, is fixed in space and Gower (1968) showed that the coordinates y of its projection onto the
space of the ordination are given by:

y =~ HY'Y)1Y'(f - vec(diag B))
= - A-1Y'(f + 2De/n). @

This formula gives the coherent (see §2.2 ) method for superimposing new points on a PCO
ordination. In a PCO, only the first q columns of Y ( ordered in decreasing order of the
eigenvalues) will be used to give a g-dimensional approximation to D. In the following it is
assumed that Y, and hence A, have q columns where q S n-1.



Consider the pseudo-sample proposed for generalised biplots, i.e. one that takes the same value
as for the jth sample, except for the kth variable which takes the value p. The squared distance
d21; of this sample from the ith sample is therefore given as

2 = & _ fxin, %10 + £
1j = dij — f(xik, xjk) + f(xik, p)-

These values may be formed into a matrix F whose jth column gives all the squared distances of
the jth pseudo-sample from all the original samples. We have

F = -2D + 2Dy + fke' 3)

where fx = {f(xjk, p)} is the column-vector giving the squared distances of the value p in the

kth variable from the value of the kth variable in the ith sample. From the superimposition

formula, the projections of all n pseudo-samples may be expressed in the present notation as:
Q=-3A"1Y'(F + 2DN).

The jth row of Q gives the co-ordinates of the jth pseudo-sample projected onto the ordination
space. Finally, the centroid of these n projections is:

Qe/n = 2A-1Y'(F + 2DN)e/n
= —=A-1Y'(fg + 2Dke/n), from (3). @

'D
Note that 2ch/n =< n2k6 ¢ — vec(diag Bk) which, apart from the ineffective constant term
(e'Dke)/n2, gives the squared centroid distances for the kth variable alone. We shall use Qk to
label the point whose coordinates are given by (4).

Thus with PCO, equation (4) is the form taken by the method suggested in §2 as the basis for
calculating the generalised biplot for the kth variable. As p changes, Qk traces a trajectory when
the kth variable is quantitative; for categorical variables p can take only / k values and therefore
Qk defines [ k representative points, one for each category-level.

3.2. Interpolation

From the superimposition formula (2), the position in the ordination of a hypothetical sample
(al,...,ap) is given by:

P
Zo = - %A'lY'( Y fk + 2De/n)
k=1



where fk = {f(xik, ak)} so that here p takes a different value, o, for each variable. Because of

p
the additivity assumption ) Dk = D, the above may be written
k=1
1 p
Zg==5A1Y' Y (fk + 2Dke/n)

k=1

p —_—
= 'Qk =pQ, say. )
k=1

Thus interpolation is simply a matter of finding the centroid Q of the points representing the
values for the individual variables and extending this p times from the centroid G of the
ordination Y; note that because Y'e = 0, the centroid G is at the origin. To avoid the
inconvenience of extension, the points Rk = pQk may be plotted rather than Qk and this is done
in the examples discussed in §5. This is purely a representational convenience and does not
apply to any of the algebraic results given in the following.

Relative both to conventional rectilinear and to oblique coordinate axes, the interpolation rule
given above gives the usual plot of a point (a1,...,0p). The rule may therefore be regarded as a
generalisation (i) for coordinate axes that are not necessarily linear and (ii) to accomodate
categorical variables. For practical use, and precisely as is routine for linear axes, the non-linear
trajectory axes for quantitative variables should be marked in unit steps of the original scales so
that it is easy to locate ok on the kth trajectory. Because of the non-linearity, equal steps on the
original scales will not normally transform into equal steps on the non-linear axes; this can give
useful information on the degree of local distortion in the approximation. Of course, for
categorical variables the values of ok are not numerical and are not represented by axes, but
rather by the category-level points. However the centroid interpolation rule (5) remains valid.
Indeed, as is shown in §3.4, the rule places the original samples precisely where they occur in
the q-dimensional PCO ordination.

With conventional axes, each sample is uniquely identified by its coordinates. That samples are
not uniquely defined with generalised biplots is a consequence of the g-dimensional
approximation, rather than of the non-linear nature of the axes. Indeed, as is obvious from
projection considerations, non-uniqueness is a property of classical linear biplots. With PCO in
general, the non-uniqueness of projection manifests itself through the non-unique way in which
the position of a fixed centroid can be generated by p points, one on each of p trajectories, or

selected from representational point-sets, in q dimensions. When all variables are categorical,
p
the finite number, L, of representative points induces a finite number, Hlk, of different
k=1



centroids, which helps with interpretation. Similar remarks pertain to forms of ordination where
the basis of approximation and superimposition is other than by projection.

3.3. Comparison with Non-linear Biplots.

In non-linear biplots (NLB) the value p=0 is common to all p trajectories which are therefore
concurrent at a point O representing the superimposition corresponding to the mean of X. O
coincides with the centroid G only for the classical linear biplot. The associated method for

interpolation given by Gower and Harding (1988) differs from the generalised biplot (GB)
p
interpolant of §3.2. Specifically, the NLB interpolant for (a,...,&p) is ZPk -(- 1O
k=1

relative to G, where Pk corresponds to ok on the kth trajectory. This may be written as

p@ - 0) + 0, i.e. the centroid of the points Py is extended relative to O (the original paper
mentions an additional small correction representing the displacement of O from G but that is
necessary only if the origin is restored to G). A more striking difference is that the GB
trajectories derived from (4) for continuous variables are not concurrent (except in the classical
case of Pythagorean distance, see §4.1). However, in both methods the vector fx is the only
term that varies with p, so the two sets of trajectories differ only in translation and will have the
same shapes. Indeed, because both NLB and GB share the same ordination coordinates Y and
the same superimposition formula (2), the interpolants for a sample (a.y,...,0p) described by
continuous variables must be the same in both methods. The following gives a more algebric
expression of this obvious geometrical result and shows how the NLB and GB trajectories may
be transformed into one another.

When all variables are continuous, the trajectories arising from (4) can be translated to meet at
O, so retaining the simple projection properties of the NLB approach. The interpolation method
of §3.2 may be used to obtain the displacement of the trajectories given by the NLB from those
given by (4) for the GB. To do this we need to know the position of the point Ok on the kth
wajectory that corresponds to the mean of the kth variable; this is obtained from (4) by setting
p=0 in fx. The GB interpolant given by (4) for the NLB pseudo-sample (0,...,0,p,0,...,0) for
the kth variable is then

Pk =01 + O2 +...40k-1 + Qk + Ok+1 +...+Op
i.e. Pk =pO - Ok + Qk,
where O is the centroid of 01, O2,...,0p. However it follows from (5) that pO is the GB
interpolant for the mean of X and hence coincides with O itself. Thus the interpolated position of
the NLB pseudo-sample in the GB representation is simply



Px=0-0k+ Qk
relative to G. Of course Pk is, by definition, the point on the NLB which corresponds to Qk on
the GB; hence O-Ok gives the displacement of the kth GB trajectory relative to the

corresponding NLB trajectory. Because
p p P P
Pi= 3(0-0K) + YQk=(-D0+ YQk
k=1 k=1 k=1 k=1

it follows from the NLB interpolation result given at the beginning of this section, that the
centroid-interpolants using either set of trajectories are identical. Thus with NLB trajectories,
one extends P relative to O and with GB trajectories one extends Q relative to G. The two
methods are precisely equivalent but the concurrency of the NLB trajectories is more
convenient. This has shown that with quantitative variables, non-linear and generalised biplots
are essentially the same thing, and simple translations can make them identical.

When categorical variables are introduced into GB, the method of §3.2 based on (4) may be
used for the joint interpolation of categorical and quantitative variables. Although zero values are
meaningless for categorical variables, the points Ok always exist for any associated continuous
variables and their trajectories may be translated to concurrency at O as described above. The
total interpolation relative to G may be written
p(P-0)+pQ+O0.

Thus interpolation now requires a combination of the extension pP from O (continuous
variables) with the extension pQ from G (categorical variables) and also involves a correction
for the displacement of O from G; it may be more simple to sacrifice the convenience of having
concurrent axes and use the direct method of §3.2.

This section has shown that the generalised biplot defined by (4) effectively subsumes the non-
linear biplot for continuous variables of Gower and Harding (1988) and therefore both methods
subsume the classical biplot for components analysis based on Pythagorean distance. However
(4) is not confined to continuous variables but is also valid for categorical variables or, indeed,
for mixtures of categorical and continuous variables.

3.4. Biplot Positions of the Sample Values

By letting p take in turn all the values xjk of the kth variable we get n vectors fj ( i=1,...,n)
which form the columns of the matrix ~2Dk. Thus the projected coordinates for all the values
are obtained by inserting into (4) to give

Zx =- A-1Y'(DkN - D)
which may be written
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Zx = A-1Y'I- N)DkI - N)
or Zk = A-1Y'Bg. ©

The columns of (6) give the n biplot coordinates associated with the n observed values of the kth
variable. When the kth variate is categorical, Bk should be replaced by Bi’é formed from the /k
different columns of Bk and similarly Zx should be replaced by ZE. Otherwise (6) will
unnecessarily repeat the same calculations. When the kth variable is quantitative, the n values of
p that actually occur in the sample may be too few, or too unevenly scattered, to give an
adequate description of the trajectory. Thus, equation (6) has disadvantages for computing
trajectories but some useful algebraic results can be derived from it.

Adding the coordinates given by all k variables gives:
p p
Y 3 Zk =A1Y' Y Bk
k=1 k=1

=A-1Y'B
=Y" Q)

Formulae (6) and (7) are equivalent to the transition formulae of correspondence analysis.
Formula (6) gives the coordinates for the variables in terms of the coordinates of the samples
and (7) gives the inverse relationships. Incidently, (7) verifies that when (4) is used, the original
samples project into their proper positions in the ordination. Indeed, this result follows direcly
from (3) by setting F = - 2D, showing that the original samples are correctly interpolated even
when the independence assumption (1) is not valid.

The mean of the n points given by (6) is Zke/n = 0. For categorical variables there are only / k

distinct points and if the ith level of the kth categorical variable occurs cj times, then the
Ik

weighted mean ZCiZik/n is at the centroid of the ordination, where zjk is obtained from the ith
i=1

column of Zi'& and contains the coordinates for the ith level of the kth variable. Note that this
result is independent of how distance is defined for categorical variables, so long as the
independence assumption (1) is valid.

3.5. Category and Sample Distances
The distances between pairs of sample points, pairs of category points and between sample and

category points are evaluated explcitly in the following, and then some remarks are given on
how to interpre these quantities. The squared distances between samples are given at the outset
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and, in terms of the elements of the centered, or inner-product, matrix B = YY', may be
expressed as bjj + bjj — 2bjj = dgj. This exemplifies the standard way for evaluating a matrix of
squared distances from an inner-product matrix.

The equivalent of the inner-product matrix for two categorical variables h,k is Zy'Zk. From (6)
Zh'Zk = BhB~Bk where B~ = YA-2Y' = (YY")", the Moore-Penrose generalised inverse. The
squared distances between pairs of different category levels of the same variable, and distances
between category levels of different variables may be evaluated from these inner-product
matrices, in the same way as for inter-sample distances.

Distances between samples and categories derive from the matrix YZk = YA-1Y'Bk. Now

YA-1Y' =1- MM' where the columns of M are the null-vectors of B. From the independence
P
assumption, we have that if m is any vector, then Xm'Bkm = m'Bm. For Euclidean
k=1
imbbeddable distances, all the matrices Bk are positive semi-definite, so that when m is a null
vector of B it must also be a null vector of Bk (k = 1,...,p). Hence YZk = Bg.

Gathering together all the results of the previous paragraphs leads us to consider the
n(p+1) x n(p+1) symmetric inner-product block matrix I, given by

B B B, .. Bp
B; B1B"B1 B1B”B; .. BB Bp
I={ B, ByB™B1 B2B™B; .. BB Bp

Bp BpB™B1 BpB By .. BpB Bp

Because BB Bk = Bk, we may write

IT=PBP
where P = (B,B1,B2,...,Bp), the first row/column of I1. Note that the sum of the elements of
the ith row-block of IT is 2BijB™B, which is 2B;, and hence that ITis in centred form.

The matrix IT contains all the information needed for a simultaneous ordination of the samples
and variables of X. Although the size of IT makes its direct use impracticable, the spectral
equation ITU = UT may be solved, to give a simultaneous PCO,by noting that B~ = YA-2Y" and
setting Q' = P'YA"l. Then IT = Q'Q and the spectral equation QQ'V = VT satisfies
(QQ)QV=Q'VT showing that U = Q'V, after appropriate normalisation. The normalisation
required is that U'U =T" which implies that I' = V'QQ'V = V'VT, so we must normalise so that

V'V =1. The advantage of this approach is that it requires the eigen-structure of the matrix
QQ' =AYPPYAT=ATY' (B2 + B} + B +..+ BI)YA' ®)



12

of order q, which is usually very much smaller than the order n(p+1) of the matrix II= Q'Q,
even wheng=n- 1.

Thus the spectral decomposition of QQ' gives a simultaneous PCO display of the np biplot
points and the n samples, which is particularly attractive when all variables are categorical.
Explicit expressions for all these coordinates may be obtained by substituting for Pin U = Q'V
=P'YA'1V. This gives the coordinates for the kth variable in this ordination as
Uk =BkYA'lV
=Zx'V, from (6).

Similarly the first n columns of P are those of the matrix B itself, giving the coordinates for the
samples as
BYA'lV=(YY)YAlV
=YV.

Thus the joint ordination merely rotates the previous biplot coordinates through a generalised
angle given by the orthogonal matrix V. This shows that all the centroid properties obtained in
§3.2 and §3.3 remain valid in the joint ordination. Any translation adjustments of trajectories for
continuous variables, as discussed in §3.3, can be done after ordination.

With categorical variables, Bx repeats each level the number of times it occurs in G, thus giving
a weighted analysis. This is easily remedied by replacing Bk in P by the n x /i matrix Bf(‘
defined in §3.4, to give the n x (n+L) matrix P* = (B, B*,...,BS) and proceeding as before,
replacing B in (8) by BEBj: .

Defining b%k) for (k = 0,...,p) to be the ith column of By, which when k = 0 is defined to be a
synonym for B, we have that the squared distance between the ith level of Bp and the jth level of
Bk is given by the Mahalanobis-type metric

hy (e (h) (K
(® )-bg yB=(6} )—bg ).

The matrix of these distances could be used with any form of multidimensional scaling to give a
joint ordination of samples and variables.

Thus IT yields the above expressions for inter-sample, inter-variable, intra-variable and sample-
variable distances. The interpretation of some of these distances requies care. Inter-sample
distances are the usual approximations to djj as given by the ordination method, here PCO. The
interpretation of inter-variable distances depends on whether distance is being measured between
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categorical or quantitative variables and whether between the same or different variables. A
consequence of (6) is that when variables h and k (say) are such that By = B, then Zh = Zk and
the plotted points coincide. Thus if h and k are categorical variables with the same profiles in the
samples, then their plotted points must coincide; if their profiles are similar the plots will show
pairs of adjacent points, representing one level from each variable. Of course this can happen
exactly only when h and k have the same number of levels (i.e. 5 = /k). An aspect of the non-
uniqueness of projection, and equivalently of the interpolation method discussed in §3.2, is that
although common profiles imply adjacency, the converse is not necessarily true, so relationships
inferred from the graphical plot should always be checked against the data. Even if the profiles
match only for one category-level of each variable, then normally B}, and Bf will share a similar
column so the corresponding category-level points will be adjacent; the details of how this
happens depend on how the matrices Bk are calculated; specific examples are given in §4.2 and
§4.3. When we are interested in distances between different category-levels of the same variable
then h =k, and we are dealing with different columns of Bi'; which will pick out different parts
of Y, so it is hard to make any general comments on the dispositions of the resulting pair of
points although, as was shown in §3.4, the weighted mean of the points representing all Ik
category-levels is at the centroid. Similar remarks apply to quantitative variables but there is now
the possibility that two trajectories may overlap for whole or part of their course. Now it
becomes important to distinguish between the observed sample values and other values that may
have been interpolated to draw the trajectories. Even when the distances derived from IT are
large, there may exist distances between interpolated points that are small, suggesting a
correlational type of agreement between the two variables which can be deduced graphically.

Turning to the interpretation of sample-variable distance, it is clear from the form of IT that these
distances are obtained from the centred matrices Bk for the individual variables, combined with
the inter-sample and intra-variable information. The terms of Bk are intimately related to the
pseudo-samples and their main interest is in the context of the interpolation results of §3.2.
Because a sample is at the centroid of its associated category-level points, it might be hoped that
some inverse relationship would hold, placing each category-level point at the centroid of those
samples charecterised by that category-level. Unfortunately this seems not to be true but there is
a sense in which something similar holds. Equation (6) shows that the coordinates for the
variables are linear combinations of those for the samples. The precise form this takes depends
on the form of Bk and special cases are elucidated in §4.2 and §4.3 where it is shown that, in
these cases, a scaled form of the plotted points for the category-levels will be close to, (12), or
coincident with, (20), the centroids of the samples with the corresponding category-levels, Little
can be said in general but consider a set of samples which are identical in all their p category
levels. Whatever measure of distance is used, these will necessarily have zero inter-sample
distances and will be represented by coincident points in an ordination. If these category-levels
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occur in no other samples, this point must also represent the corresponding category-levels; if
these category-levels do occur in other samples, then samples will be attracted towards the
points representing their category levels.

With MCA, sample-variable relationships may be interpreted through the inner-product implicit
in the singular-value decomposition, but it is unfortunate that the points plotted (see equations
(13) and (14)) generate p-1/2UX2V'C-1/2 rather than UZV' itself. In general, this result is
replaced by YZk = Bk, giving a simple, but not very helpful, cosine basis for interpretation.

4. SOME SPECIAL CASES
4.1. Pythagorean Distance

For a continuous variable with Pythagorean distance we have By = xkxk' where xk gives the
original (centered) sample-values of the kth variable. Then from (6)

Zk = A-1(Y'xK)xk'
which is of unit rank and hence the points represented by Zk are collinear. Because Zke = 0, this
line contains the centroid of the ordination; also from (4), the centroid of the ordination
corresponds to the superimposed mean. This is in accordance with the classical linear biplot.

42. The Case of Categorical Variables with the Extended Matching Coefficient

Suppose dfj is given by the extended simple matching coefficient,
i.e. f(xik,xjk) =0 if xjk = Xjk
=1 if xjk # xjk/-

Then, the full and kth-variable distance matrices are given by
=- %(pee' -GG') and Dy = —;(pee' - GxGy),
where Gk comprises the /kx columns of G referring to the levels of the kth variable and C,
which will be needed shortly, refers to the corresponding diagonal elements of C, so that
e'Gk = ej) Ck. It follows from (6) that
Zk = - DA-1Y'(I - N)(pee' ~ GxGi)(I - N)
= 202A1Y'GGLI - N)
= - 209A-1Y' G(Cyele/n - GL)) )

which is of size gxn but with only /k distinct columns. Selecting these Ik columns gives

Z§ = - 3A1Y' G(Creeneel - 1) (10)
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for the matrix giving the coordinates representing the kth categorical variable; the q x L matrix
which gives the coordinates for all p variables is

Z=-3A1Y' G(CIn-1) a1
where J = diag (ezlejl,elzejz,...,elpel'p), a block-diagonal matrix of order L.

Next we shall examine the detailed form given by (10) for the coordinates of the g x 1 vector z;
representing level 1 of the kth variable. Equation (10) shows that the co-ordinates of level 1
depend essentially only on those rows of Y that refer to units having level 1 for the kth variable.
Writing ¥, for the mean of these rows of Y and similarly for )72,...5/11(, (10) gives

Kk
1 1 _ -
Z1 =—7A'1 HZC%yi -C1y1 - (12)
1=1 Ik
This result clearly generalises to other levels and other variables so that ZCiZi/n = (), showing
that the weighted mean of the level co-ordinates for each variable isiaflthe centroid of the
ordination, as was shown generally in §3.4. Note that for the unweighted mean

Ik le
Szifli = ~5A-1 ) ifn,
i=1 i=1
which may be regarded as a summary statistic for the kth categorical variate, from which each
level co-ordinate, such as (12), deviates by the simple term %ciA“1 yi (i=1,...,/k). For equal
Ik
weights Zzi will be zero, and even for unequal weights, the weighted and unweighted means
i=1
will often differ little, so that approximately
zi ~ ©iA7 IS,
showing the category-level coordinates as a scaled form of the mean of sample coordinates, as
referred to in §3.4.

In §3.4 it was shown that matching profiles imply matching trajectories. If only the first (say)
level of h and k match then for the extended matching coefficient fy = fik in (4) and adjacency
then depends only on the relative values of the row-totals Dhe and Dye, or effectively on the
centroid squared-distances for the two variables. The centroid distances may have similar values
even when the other levels occur randomly giving, approximately, equal row-totals.
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4.3. Multiple Correspondence Analysis

The multiple correspondence analysis of G is based on the singular value decomposition of

1
12GC-12 = —=ee'C12 + UZV'
P "

to give sample coordinates Y =p-1/2UZ (13)
and category coordinates Z=C12v:, (14)
From (13) and (14) we have that z =Cc12(vsu)u

= p'l/ZC'lG'U

=C-1G'YZ"]
or Z'=X-1Y'GC-1, (15)
Similarly Y' =plE1Z'G', (16)

Equations (15) and (16) are the transition formulae of correspondence analysis, slightly
modified to accommodate the special conditions of MCA. The orthogonality conditions give
e'Y =0 and ¢'CZ =0, so that Y gives centred principal coordinates of the points generating
inter-sample chi-squared distances, and the weighted means of the category scores Z are also at
the centroid.

The methodology developed in §3 may be used directly to operate on the matrix Y of MCA to
derive the special form of category coordinates Z+ obtained from (6) in accordance with the
generalised biplot methodology. Accordingly, the formula for Z* is developed below,
preparatory to comparing the Z of MCA (i.e. (15)) with Z*. The chi-squared distance between
two sample-units, one with the ith category-level and the other with the jth category-level of
variable k, is given by
d%j=;cli+%) ifi#j}
=0 ifi=j

Then, the full and kth-variable distance matrices are given by

=- %p'z(Aee' +ee'A-2GC1G") and Dy =- %p'z(Akee' + ee'Ag - 2GClGp),
where A = diag(GC-1G") and Ak = diag(GkCj!G). It follows from (6) that

Zg¢ = p2A-1Y' Gk C (G - Cielge'/n)
=p2A-1Y' GkalGl'( a7n
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which is of size g>n but with only /i distinct columns. Selecting these lk columns gives
7" = p2A-1Y'G Cl (18)

for the matrix giving the coordinates representing the kth categorical variable The q x L matrix
giving the coordinates for all levels of all categorical variables obtained by (6) for chi-squared
distance between samples is

Zt =p2A-1Y'GC'L, (19)

Following very similar arguments to those given in §4.2, it follows from (6) that the coordinates
of the first level of the kth variable are given by

2] =p2Alyy, (20)
showing category-level coordinates as a scaled form of the mean of sample coordinates, as
referred to in §3.4.

Comparing (15) and (19) we see that the only difference is in the scaling of the different
dimensions. Indeed, because A = Y'Y we have that A"l = p£-2, so that whereas the scaling
associated with MCA is given by (15) as X-1, that given by the generalised biplot of §4 is

p~1Z-2. Of course the distances generated by Z* are not chi-squared distances as are those given
by Z, but this is of little moment for, as pointed out by Greenacre (1990), chi-squared distances
generated between levels of possibly different categorical variables (the columns of G) have
even less to recommend them than have the chi-squared distances between the rows of G.

Expressing Z* in terms of V gives:

Zt =plCl2y 1)
which may be compared with Z given by (14), showing a close analogy with components
analysis and classical biplot results where if, for centred X, we write X = UZV then the scores
for the units are given by Y = UZ (see (13)) and the variables are given by Z = V (see (21)).
Indeed a formal components analysis of p-1/2GC-1/2 (with non-centered G) may be used to
derive the Y of MCA given by (13), and then either (15) used to obtain the MCA category
scores or (21) used to obtain the alternative scores.

There are also strong similarities between the expressions for Z (15) and Z+ (19) and that for Z
(11) relating to the extended matching coefficient. A further comparison can be made between
(20) and (12). However it must be remembered that the ordination Y in (11) differs from the
MCA Y which is common to (15) and (19), so that direct comparison is invalid.
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The argument given at the end of §4.2 that showed that for the extended matching coefficient,
matches among only one level each of two categorical variables, could generate pairs of adjacent
points, breaks down for MCA because of the differential weighting but it might be expected to
remain approximately valid provided the weight-matrices Ch and Ck are not too disparate.

5. EXAMPLES

To illustrate the above methods, a small set of data given by Jongman, ter Braak and van
Tongeren (1987) is used. This refers to 20 dune areas on the Dutch island of Terschelling, for
each of which five environmental variables are available. The data is reproduced in Table 1. Itis
not intended to give here a detailed discussion of the data but merely to illustrate the similarities
and differences of the various methods and to show the combination of categorical and
continuous variables in a single ordination.

[Table 1, Figure 1, Figure 2 here]

Because moisture class M3 does not occur in any of the 20 samples listed, this category is
absent in the subsequent analysis. Fig. 1 shows a two-dimensional MCA of the data of Table 1,
excluding the quantitative variable for thickness of the A1l soil horizon. Fig. 2 shows the same
data analysed using the extended matching coefficient (EMC) and the method of §3, as
developed in §4.2. The two figures have much in common although, as is notorious for MCA,
neither gives a good two dimensional fit (40% for MCA and 46% for EMC). The centroid
interpolation results of §3 may be verified and it can be seen that MCA tends to draw towards
the centroid those category-levels with the greatest weights (e.g. SF, U2, M1 and MS5). The
expected patterns are revealed in both plots. Thus nature management (NM) is associated with
no fertiliser (CO) and high moisture content (M5) and these occur on farms 14, 15, 19 and 20,
with other nature management farms with differing land use and moisture levels being more
remote from the NM representative-point. Similarly, standard farms (SF) are associated with
dry locations but not too dry (M2 rather than M1), high levels of fertiliser (C4) and mixed land
use (U2) - these occur on farms 1,3,4 with near relatives on farms 12,13 and 16. Finally,
hobby and biological farming are associated with low moisture (M) , little fertiliser (C1 and C2)
and grazing (U3). The full detail of Table 1 cannot be reproduced in the two dimensions of
figures 1 and 2 and there are many intermediate samples not well integrated into the plots. Thus
farm 16 with moisture-level M4 is plotted near the point for M2, Nevertheless the overall
pictures given by Figs. 1 and 2 are remarkably accurate.

Not shown here is a MCA with the category-level points added by (4) in its special form (19).
Of course the sample points are identical to those in Fig. 1. The remainder of the figure is so
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similar to Fig. 1 that it is not worth reproducing - the biggest difference is in the detail associated
with BF and HF but is not of any significance. This similarity is not unexpected, as (15) and
(19) differ only in scale and the singular values for the two dimensions, .81 and .75, are close
enough to give nearly equal scaling on both axes whether squared or not.

[Figure 3 here]

In Fig. 3 the A1l horizon data, transformed to a log-scale and given unit range, is included and
the variable Manure-class is treated as quantitative with unit range. Pythagorean distance is used
in both cases. Thus in Fig. 3 these two variables are represented, as with classical biplots, by
straight-lines through the centroid of the ordination. As recommended by Gower & Harding
(1988) the plotted values are restricted to the range of these variables in the sample. The EMC
was used for the three remaining qualitative variables and gave a similar plot to Fig. 2. Because
the level of manuring is now treated quantitatively, it presents a more ordered sequence than
previously. The deeper soil horizons tend to be associated with either nature management or
standard farming and the shallower horizons with hobby/biological farming and dry soils; the
line representing these quantities falls midway between the two groups of farms to accommodate
the disparate groupings.

[Figure 4 here]

Fig. 4 is as for Fig. 3 but now the distance used for the two quantitative variables is the square-
root of the Li-norm. Gower & Harding (1988) explain how this gives a non-linear biplot for the
variables which is piecewise-linear with "a corner" for every data-point. The two polygonal
trajectories do not meet at the centroid, and indeed as was shown in §3.3, if there were more
than two quantitative variables, then in general their corresponding trajectories would not be
concurrent. The main difference from Fig. 3 is the way the polygonal line for manuring turns
towards nature management for no manuring and towards standard farming for heavy
manuring. For interpretation we need the projections of the mean for each quantitative variable,
labelled as Oj for the Al-horizon and as O¢ for manuring level. Oy is quite near O¢ and the
possibility of translating the two trajectories to O, the mean of Oa and Oc, to give the Gower-
Harding non-linear biplot (see §3.3) is irrelevant in this case, especially as there are only two
trajectories, so any inconvenience there may be in non-concurrency does not arise.

6. CONCLUSION

The above has developed a generalised biplot methodology which subsumes, as special cases,
classical linear biplots and non-linear biplots for continuous variables It also allows categorical
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variables and mixtures of categorical and continuous variables; a different metric may be defined
for every variable. The methodology has very great generality, embracing any ordination
method. Details are given of the simplifications that occur when ordination is by PCO and
variables contribute independently to an Euclidean imbeddable metric, thus giving a simple
method for interpolating units in the ordination. A practicable general ordination method has
been proposed which gives an optimal least-squares fit to n(p + 1) points, simultaneously
representing samples and variables. In the special case when chi-squared distance is used for
categorical variables, the ordination of the units must be that of MCA (apart, perhaps, form
idiosyncrasies of scaling the axes); the generalised biplot ordination of the variables is shown to
be very close indeed to that given by MCA itself. When the extended matching coefficient is
used, a new form of ordination is derived which has advantages over MCA, while preserving
some of the nice features of that method.

Even when the independence assumption is not satisfied, much of the basic methodology
remains valid. Gower and Harding (1988) mentioned the possibility of using non-linear biplots
with any form of metric scaling and with the so-called non-metric multidimensional scaling
methods which employ monotonic, or other, mappings of the metric djj. This use has since been
demonstrated in so-far unpublished work by Underhill interpolating into a monotonic step-
function and by Heiser and Meulman interpolating into a smooth monotonic B-spline. These
methods also form a special case of the generalised biplot. It is clear also that the method may be
extended to more structured forms of sample (e.g. individual scaling, between/within groups
canonical analyses, generalised Procrustes analysis). Every set of data may be regarded as a
multidimensional configuration, embedded within which are the generalised biplot trajectory
axes and points representing category-levels. It follows that any transformations done in the
course of subsequent data-analysis may be made to operate on the augmented configuration, so
carrying over into the final analyses, biplot information which may be used to aid interpretation.
Thus the simple idea underlying the generalised biplot both unifies and greatly extends exisiting
methodology.
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Sample Al Moisture Grassland Grassland Manure
number horizon class management use class
(cms) type
1 2.8 1 SF 2 4
2 3.5 1 BF 2 2
3 4.3 2 SF 2 4
4 4.2 2 SF 2 4
5 6.3 1 HF 1 2
6 4.3 1 HF 2 2
7 2.8 1 HF 3 3
8 4.2 5 HF 3 3
9 3.7 4 HF 1 1
10 3.3 2 BF 1 1
11 3.5 1 BF 3 1
12 5.8 4 SF 2 2
13 6.0 5 SF 2 3
14 9.3 5 NM 3 0
15 11.5 5 NM 2 0
16 5.7 5 SF 3 3
17 4.0 2 NM 1 0
18 4.6 1 NM 1 0
19 3.7 5 NM 1 0
20 3.5 5 NM 1 0
Table 1: Environmental information for 20 Dutch dune sites (reproduced with permission

from Jongman, ter Braak and van Tongeren, 1987)

Key; Grassland management (standard farming SF, biological farming BF,
hobby farming HF, nature conservation management NM),
Grassland use (hay production 1, intermediate 2, grazing 3), Moisture class and
Manure class are ordinal variables.

Figures 1 - 4. These are all ordinations of Table 1.
Figure 1 is a Multiple Correspondence Analysis, Figure 2 is an analysis based on
the Extended Matching Coefficient, Figure 3 introduces continuous variables
with Pythagorean distance and Figure 4 continuous variables with the
square-root of the L.1-norm.,

Key Grassland management: SF, BF, HF, NM (see key to Table 1)
Grassland use: U1 (hay production), U2 (intermediate), U3 (grazing)
Moisture class: M1, M2, M4, M5

Manure class: C0O, C1, C2, C3, C4 (levels of manuring)
Al horizon in log-centimetres
G (Centroid), O (mean of Al horizon), O¢ (mean of manure levels)
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