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MAJORIZATION WITH ITERATIVELY REWEIGHTED LEAST
SQUARES: A GENERAL APPROACH TO OPTIMIZE A CLASS OF
RESISTANT LOSS FUNCTIONS

Peter Verboon

In this paper a general algorithm is given for the optimization of a class
of resistant loss functions. The theory on majorization is used to prove
that this algorithm converges and that it is actually based on iteratively
reweighted least squares. For the most important resistant loss
functions, a majorization function is given. Finally some relations are
shown berween the majorization approach and the EM algorithm.

1. Introduction

It is already known for a very long time that the use of the least sum of squares criterion is
very vulnerable when there are outliers in the data. This means that a technique which is
based on a least squares loss function may come up with results which are very much
influenced by the effect of one or more outliers. From the wide bulk of literature on this
topic we may safely state that loss functions based on least squares (LS) are definitely not
resistant to outliers. |

The reason for this phenomenon is clear: due to the square large residuals will have a
relatively large contribution to the loss. Since the objective is to minimize the loss these
very large residuals will not be allowed, therefore the model will be attracted to the relative
neighbourhood of the outliers and consequently outliers will be fitted at least moderately
well. It follows that outliers cannot be neglected by a LS criterion, for this would cause
too large residuals and consequently a high loss.

The obvious solution for this problem is to replace the LS criterion by a resistant one.
However, the gain of resistance will obviously cost some extra theoretical and
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computational efforts. In this paper we will discuss three alternative loss functions that are
supposed to possess resistant properties. These functions are: the Huber function (Huber,
1964), Tukey's biweight function (e.g. Andrews et al., 1972,) and a three-part
redescending function (Hampel, 1968). The biweight and the three-part redescending
functions are more radical than the Huber function, for they place a bound on the effect of
the residuals upon the loss. In other words when a residual is larger than a particular
value, it will cause no further increase in the loss. These functions have proved to be
valuable in the context of robust regression and robust estimation of location.

From a computational point of view the optimization of these functions often consist of
two steps: (i) the conditional optimization of the loss criterion for some set of weights, (ii)
the computation of the weights as a function of the residuals derived from step (i).

It follows that weights play a very important role in these resistant loss functions. The use
of weights to create resistant procedures can be looked upon from two different points of
view, an intuitive and a technical one. From the intuitive point of view one could argue
that the weights are used to increase or decrease the importance of some observations. An
in some way important observation will obtain a large weight, while for instance an outlier
will be down-weighted. In this way weights are a natural tool to deal with outliers and
hence to create resistant procedures. However these weights are not known in advance
and are found as a function of the residuals. The residuals then are computed on the basis
of weighted observations. This brings us in a natural way to an iterative procedure in
which weights and residuals are alternatingly computed.

From a technical point of view a particular loss function is considered and the weights are
theoretically derived to create a convergent algorithm that minimizes the objective function.

To minimize the three functions mentioned above we are going to use a majorization
approach from which an iteratively reweighted least squares algorithm is derived. For each
objective function the majorization is based on a family of weighted LS functions, in
which the weights are defined as functions of the residuals. The theory on majorization
will provide us with the proof of convergence of the algorithm.

In the next section the majorization approach is briefly explained. In the remainder of this
paper it is shown for each loss function how the majorization functions should be chosen,
and thus how the weights are derived from the theory. We will also examine the derivative
of each function, because this clearly shows the influence of the residuals upon the
solution. Furthermore the derivative has a direct connection with the choice of the
weights.
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2. Majorization

The resistant loss functions that we are going to use in this study are complicated
functions which cannot be minimized analytically. To minimize these functions we will
use the majorization approach. A thorough discussion of this approach in the context of
multidimensional scaling is given in De Leeuw (1988) and in De Leeuw and Heiser
(1980). Some interesting applications are Meulman (1986), De Leeuw and Bijleveld
(1988), Verboon and Heiser (1989).

The general idea of majorization is to define a family of simple, mostly quadratic functions
(so-called majorization functions), and repeatedly minimize these instead of the
(complicated) objective function. The majorization function should always be larger than
or equal to the objective function and both functions should have at least one point in
common. If these simple functions meet the requirements of a proper majorization
function it can be proved that the algorithm converges to a minimum. This minimum is
always the global minimum if the objective function is convex.

Consider some convex function ¢(r), which is a function that cannot be minimized easily.
The set r is the set of residuals, defined as the difference between observed values and a
specified model. Thus r = z(= observed values) - z*(= model). To minimize ¢(r) we
define a family of majorization functions p(r; w). In each step of the algorithm we
minimize WU(r; w) as a function of r for fixed w. The parameter set w defines the exact
shape of the majorization function, this set will be different in each step. We will refer to
the set w as variable weights: i.e. weights that are variable. The variable weights are
computed as a function of the residuals that have been found in the previous step of the
algorithm, thus: w = w(r), where r denotes the "old" set of residuals. The shape of w(r)
depends on ¢(r) and p(r; w). Suppose we have some initial set of estimates together with
their corresponding residuals, r. The majorization algorithm can now be seen as

consisting of three consecutive steps:

1) computation of variable weights w = w(r).
2) minimization of majorization function Li(r; w) to find new model parameters.

3) computation of new residuals r = z - z*.

After these steps the function ¢(r) is evaluated and if the change in loss compared to the
previous step is smaller than some convergence criterion we stop, otherwise we return to
step 1) and cycle through these steps until convergence,
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In the present study the function u(r; w) is always chosen as a weighted least squares
function. Because the weights may change each time we cycle through the algorithm, we
can call this optimization procedure an iteratively reweighted least squares procedure (cf.
Holland & Welsch, 1977).

Before we are going to use a particular function pu(r; w), we should first verify that
iw(r; w) is indeed a proper majorization function. In order to do so, the following

conditions formulated as (in)equalities should be true:
(r; w) = ¢(r), (2.1)
(r; w) = ¢(r). (2.2)

Condition (2.1) says that the majorization function should have exactly the same function
value as the objective function in a so-called supporting point, which is defined as the set
of parameter estimates in the previous step of the algorithm. By condition (2.2) it is
required that the majorization function is always larger than the objective function.

In the following sections we will describe resistant loss functions, together with their
majorization functions. For each of the latter functions, requirements (2.1) and (2.2) will
be proved. Furthermore for each of the loss criteria the corresponding weight functions
will be derived.

3. Huber's function

A straightforward extension of the LS criterion is Huber's loss function (Huber, 1964).
The function is based on the idea of using absolute residuals instead of squared residuals

when the residuals are large. It is defined as a summation over residual components:
n
Opy(r) = 21 Onu(ry, (3.1)
1=

with n as the number of elements in r. The elements of the summation are defined as:

121} if Iyl <c

On(ry) = { (3.2)

crjl-12¢2  if Il >c.

The objective is to find a set of parameter values that minimizes a combination of sums of
squared residuals and sums of absolute residuals. In Huber's function ¢ is some
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prechosen constant, the so-called tuning constant, which distinguishes small residuals
from large ones. So the Huber function consists of two parts: for residuals smaller than
the tuning constant the ordinary least sum of squared residuals is used and for large
residuals the criterion is the least sum of the absolute residuals. The basic idea is that large
residuals, due to outliers for instance, will have a less devastating effect upon the solution
than in the least squares case. In other words the Huber function should be more resistant
to outliers than least squares. Note that if ¢ is chosen very large the Huber function
becomes the ordinary least squares function, if ¢ is chosen near zero Huber's function
considers the least sum of absolute residuals. Huber's function therefore is also a
generalisation of the so-called L norm.

The derivative of Huber's function is:

T, if Iyl < ¢

() = { ' £

¢ sgn (ry) 3.3)

Iril 2c.

So we see that the addition of an observation always affects the estimation of the function
parameters. However, the influence of an observation which yields a residual larger than
the tuning constant is less than in the LS case. Therefore this function will be more
resistant than the LS criterion.

Since Huber's function cannot be minimized directly we use majorization. The following
majorization function will be used to minimize Huber's function, which is also a
summation over n elements:

n {1/2wir12 if r{ <c (3.4)

Myl w) = 3 5 )
=1 (172wt + 1/2¢ 1; - 1/2¢ if Ty 2 c.

This is a weighted quadratic functions of the residuals, where r; represents the absolute
value of the residual found in the previous step. We will prove that the function py(r; w)

is indeed a proper majorization function if we choose the weights as

1 if r; < ¢
Wity Lo gf ;2 ¢ (3.5)
r

Notice that because of this choice the value of the weights are always between 0 and 1.
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If piyy(r; w) is a proper majorization function then the conditions in (2.1) and (2.2) should
hold. For condition (2.2) there are four different cases to be examined (see also Heiser,
1987).

() Il <cand <
Now py(r; w) and ¢y(r) are equal by definition.

@) Il =2cand rj<c
Starting from the inequality 1/2[c - Irjl]2 > 0 we find that clrjl - 1/2c < 1/2r%. Now using
the second part of (3.2) and the first part of (3.4) we obtain ¢y(r) < puy(r; w), if the

weights are chosen as in (3.5).

(iii) Il 2cand rj 2 ¢
We start from the inequality wj[r; - r;]2 > 0, which gives

2 12 TiT
Wi I + wj 17 - 2wirri = 0,

substituting the expression for the weights yields:

cry+ Wi ri2- 2cr; 20 <=> 2cr;<c I + Wi ri2 <=>

crp- 12¢2 < 12c 1+ 12wt 2- 12¢2  <=>  y(r) < py(r; w).

(iv)i§l<cand rj=c¢
Since 0 <lrjl < ¢ <r;,we also have 0 <Ir;l /c < 1 <r/c. The left part remains smaller than

one if it is squared, which yields:
0<% c2< 1< ryc,

and therefore 1 < c 1.

This equality remains valid when multiplied by the nonnegative quantity (r; - ¢):
(r;- ) ri2 <(rj-c)cry,

after some rewriting we obtain:
ri2 < (c/ri)riz+ crj- 2 <= Oy(r) < uy(r; w).

Steps (i) to (iv) prove (2.2). To prove (2.1) we have:
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(v) 1y =13, leading to: ¢y(r) = Uy(r; W)
The equality is immediately verified by substitution of r; in (3.2) and (3.4) and by
substituting the expression for the weights in (3.5).

We have shown that in each situation ¢y(r) < py(r; w) and that ¢y(r) = py(r; w). It
follows that py(r; w) is a proper majorization function for ¢py(r).

So the minimization of Huber's function requires a two-step algorithm. To show what the
Huber procedure is actually doing, a graphical presentation is given in Figure 3.1 of one
cycle in the algorithm for the linear regression problem.

Figure 3.1 Illustration of reweighted least squares algorithm
for the Huber function.

In (a) there are 15 points with the ordinary least squares regression line fitted through the
points. This line clearly does not fit the data satisfactory. In (b) a band centered at the
regression line is indicated by two parallel lines. The band width depends on the tuning
constant. Points outside the band are translated , parallel to the y-axis, to the border of the
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band. In this way, new pseudo-observations, see (c), are defined: they coincide with the
original points inside the band and with the translated points on the border. On these
pseudo-data we again fit a least squares regression line (d). We may proceed by defining a
new band with the same width around this line, find new pseudo-values and so on, until
the steps converge to a situation where the regression line has become stable.

In Figure 3.2 the Huber function with its derivative are shown. The derivative clearly
shows that the influence of outliers is bounded. After a certain value there is no further
increase in influence upon the solution. This property was also illustrated in Figure 3.1
where points with large residuals were projected to the border of a band in order to
diminish their influence in the next step of the algorithm.

Figure 3.2 The Huber function and its derivative.

A convenient property of the Huber function is its monotonic y-function. By this property
we know that the Huber function is convex and therefore we may conclude that after
convergence of the majorization algorithm the global minimum is attained. The next
sections are about redescending functions, which are not convex and therefore do not
necessarily attain the global minimum after convergence.

4. The biweight function

One of the earliest proposals for a resistant loss function is Tukey's biweight function, an
abbreviation of bi-square weight. As the name already suggest this procedure attributes
weights to the observations. The function consists of two parts, like Huber's function.
The first part defines the function ¢g(r) for small residuals and the second part is constant

for large residuals. The function is defined as:
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n

op(ry) = ):1 oy, 4.1)
I=

where the elements of summation are:

c2/6(1 - (1-(r/e)»3) if Il <c

42
1/6 if |I'i| > C. ( )

dp(ry) = {

So for residuals with absolute values larger than c there is no further increase of the loss: it
is therefore said that the influence of the residuals is bounded. The biweight is actually a
redescender. The derivative of the biweight function is:

1;(1 - (r;/c)%)? if Ir; 1 < ¢

« 43
0 if Ir; 1 > ¢ (+3)

Y1y = {

The derivative or influence curve shows that the increase in influence is zero for residuals
larger than c¢. Because of this property the biweight belongs to the class of hard
redescending functions, Both function are drawn in Figure 4.1.

Figure 4.1 The Biweight function and its derivative.

In order to minimize the biweight function the following majorization function is used:
n
up(r; w) = ¥ c2/6(1-3w;(1-(ry/c)H)+2w;3/2)., (4.4)
i=1

The r; are again defined as the absolute residuals from the previous step. This function is
also a weighted quadratic function of the residuals. The weights wj; in this function are
defined as:
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R AVAY; : .
W ={(1 (ri/c)*) if r<c (4.5)

0 if ri > C.

It is easy to minimize (4.4), this gives us new residuals which define new weights
according to (4.5).

To prove that the proposed algorithm indeed converges, we must prove that Hg(r; w) is a
proper majorization function. To do so we will examine the conditions (2.1) and (2.2)
which must be satisfied for a majorization function. For ease of notation we assume
without loss of generality a fixed tuning constant ¢ = 1.

(1) It must be true that ¢pg(r) = Hg(r; W). Substitution of (4.5) in (4.4) yields for the first
part of the function:

Hp(r; w) = 1/6 T(1- 31 - 12)3 +2(1 - ;2)3) = 1/6 T(1- (1 - 193 ) = ¢ ().
The second part of both functions are equal by definition.

This is the first property (2.2) of a majorization function. Next it must also be true that the
value of the majorization function is never smaller than the value of the objective function.
Again, as with the Huber function, all possible situations must be considered. However in
with this function there are only two situations. If the inequalities can be proved for any
element, they will consequently be proved for the summation over the elements too.

(i) Iyl > 1.

We must prove: ¢g(r;) < Pt W) <=>
1/6 < 1/6 (1- 3w; (1 - 1) + 2w;3/2) (4.6)
This is equation is true since w; (1 - riz) <0and wi3/2 > 0, thus the term
(1-3w;(1- riz) + 2wi3/2) > 1, which proves (4.6).
(iii) Iyl < 1.
We must prove that ¢p(r) < Up(ry; wp) <=>
16 (1- (1 - 123 ) < 1/6 (1- 3w; (1 - 1;2) + 2w;312). 4.7

We start from the general inequality (a-b)Z 2 0, which gives aZ > 2ab - b2. Using this
inequality we may also write:

10
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(1-1222 2(1 - 191 - 1) - . (4.8)
Next both sides are multiplied by the positive quantity (1 - ri2), yielding:
1 -1232 2(1- 1920 - 19 - Wi - 12).
Substituting the second part of (4.8) for the term (1 - ri2)2 does not change the inequality:
A -3 2 20201 - 1A - 152y - Wil - 12) - wi(l - ).
Working out this expression yields
(1 -12)32 3(1 - rP)w; - 2w;32,
Substracting both terms from one and multiplying by 1/6 gives
1/6(1 - (1 -1D%) < 1/6(1 - 31 - 1AL - 122 + 21 - 1)),
which proves (4.7).

Having proved that in both possible conditions pg(rj; wj) = ¢g(r;), we may conclude that
pg(r;; w;) is a proper majorization function for ¢g(r;).

5. The three-part redescending function

Another redescending loss function is the three-part redescender, introduced by Hampel
(1968). In the shape of the function we actually distinguish four parts: an ordinary
quadratic part with a positive slope, a linear part, a quadratic part with a negative slope and
finally a constant part. The function smoothly changes from one part to another. It is also
defined as a summation over residual components:

or(r) = ﬁl Ou(ry. (5.1)
1=

To keep the formulas relatively simple we choose the function with equally spaced
intervals. An additional advantage is that the function now depends on only one tuning
constant instead of three. However, from a computational point of view it is better to
choose the decreasing part of the derivative larger than the other parts. The components of
Hampel's function (multiplied by a constant 2) are defined as:

11



2
5

2clryl - ¢2 if

¢R(r,') =

L6C|ri| - riz- 5c2 if

4¢? if

Ir;l <

The three-part redescender

¢ <Ir;l £ 2¢

(5.2)

2¢ <Ir;l £ 3¢

irjl > 3c.

The first two components are identical to Huber's function. However, for larger residuals

the function diminishes the increase in influence until even no increase is allowed for

residuals larger than 3c. This can also be seen if we write down the derivative:

Tj if
¢ sign(r;) if
Wr(®) = 3¢ sign(ry) -1y if
0 if

|I'i| <c

¢ <lIrl £ 2¢

2c <Irjl £ 3¢

|I‘i| > 3¢

(5.3)

In Figure 5.1 an illustration is given of the three-part redescender and its derivative.

Figure 5.1 The three-part redescending function and its derivative.

The majorization function is again a weighted quadratic function, which is also defined in

four pieces. The components of this function are:

HR(Tp Wi) = 3

r 2

Wil
2 2
erl + lei - C

2 2
wiri + 3crj - Sc

\wiriz + 4c2

I

(5.4)

12
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The r; are the absolute values of the residuals from the previous step. This function is a

proper majorization function for the three-part redescender if we choose the weights as:

1 if ri<c
. c/r; if c<r; £2c (5.5)
! (3c/r;) - 1 if 2¢ <r1; <3¢
0 if r; > 3c

Like in the case of Huber's function we will prove that Lg(r; w;) is a proper majorization

function of ¢r(r). First we examine condition (2.1). This condition is easily verified by
substituting r; = r;, which yields for each of the four parts: up(r;; w; )= ¢r(r; ).

Condition (2.2) is more complicated to verify, for we have to check all 16 combinations,
that is, for each part of the majorization function we must prove that it is above each part
of the objective function. However, most of these situations are straightforward. Table 1
summarizes the situation.

Table 1. Overview of all conditions to be proved

absolute previous absolute residuals

residuals <c c-2¢ 2¢c-3¢ >3c

<c section 3 section 3 * 4¢c2 > max g(r)
c-2c section 3 section 3 * 4¢? > max Or(M)
2¢-3¢c min pg(r;w) = max ¢g(r) * e 4c? = max g(r)
>3c min Ur(r;w) > max Qr(r) * * 4¢? = Or(T)

For residuals and previous residuals smaller than 2¢ we are dealing with the Huber
function, for which the conditions are proved in section 3. The inequalities in the last
column of the table can also directly be verified. Since the majorization function in this
situation is constant (4¢2), we only have to compare it with the maximum values of the
objective function. These maximum values of the objective function can easily be found
by substituting the border values of the corresponding interval; the maximum values of
Ogr(r) are respectively ¢2,3¢2 , 4c? and 4¢2.

The same reasoning holds for the last two elements of the first column, for we can easily
find the minimum values of the majorization function and the maximum values of the
objective function, which immediately prove the inequalities. The minimum values of

13



The three-part redescender

L (r; W) are respectively 4c2 and 9¢2, the maximum values of ¢g(r) are respectively 4c?
and 4¢2.

There are still six situations left for which condition (2.2) has to be proved. These are
marked with a star in Table 1.

cell 3.2: 2¢< €3¢, c<ri<2c

Starting from (r; - 2¢ )2 2 (0, gives
r% - 4cry + 4¢2 > 0.
Furthermore w;(r; - 1% = 0, with w; = ¢/r; gives cr; - 2cry + wir% 2 0. Summing both
inequalities yields:
wir? + 12 - 6cr; + cry + 4c2 20 <=>
2 2

wir{ + cr; - 2> 6¢r; - 17 - 5c2 <=> HRr(tis W) = Op(ry.

cell 4.2: 3c<lIrl;c<ri<2c
Since 1; > 3¢, 2cr;- 5¢2 > 0. Again we have wi(r; - ;)2 2 0, with w; = ¢/ry giving:

crj - 2crp + wirl2 20.

Summing both inequalities yields:

wit? + crj- 5¢22 0 <=> wyr? +cri- c224c2 <=>

HR(Ti; Wi) 2 Or(r; ).

cell 1.3: Irl<c¢;2c<r;<3c

We must prove: Hg(r; wy) = Or(ry), thus wir% +3cr; - 5¢2 > r%, with w; = 3¢/r;- 1
(1) since r; < 3c, wir% >0,

(ii) since rj > 2¢, 3cr; - 5¢2 > ¢2,

(iii) since r; < c, r% <¢2,

(ii) and (iii) yield (iv): 3cr; - 5¢2> riz, finally (i) and (iv) prove pg(r; wp) = Or(ry.

14
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cell2.3: c<Irl<2¢;2c<r<3c
We must prove: Hg(rj; W;) = Ogr(r;), thus wir% + 3cr; - 5¢2> 2cr; - ¢2 with w; = 3c/r; - 1.
Consider this equation as a function of r; and r; which must be positive on the given

interval:
- 1) = wirl . _ 4c2 - 2cr
f(rj; 1) = wir{ + 3cr - 4¢” - 2c1; 2 0.

We will eliminate r; by taking the partial derivarive to rj and setting it equal to zero:

of (rj; 1) _ _
W— 2Wi1'i -2¢c= 0,

thus, r; = ¢/w. Independent of r; the minimum of f(r; r;) on the given interval is attained
for r; = 2c¢, since 0 < w; < 1/2. Now substitute r; = 2¢ and w; = 3¢/r; - 1, which gives

12¢3/r; + 3cr; - 12¢2 2 0,
multiplying with the term ry/3c gives
4c? +r% - 4cr; 20,

which is always true since (zj - 2022 0.

cell 3.3: 2c¢<Irl<3¢; 2c <1 <3¢
From the inequality 3¢/ ri(r; - ri)2 2 0, we obtain 3¢/ r; r% - 6¢cr; + 3cr; 2 0. Adding the
term (- r% -5¢%) and rewriting yields:

3¢/ 1 r% - r% + 3cr; - 5¢2 > 6cr; - r%+ 5¢2 <=>

HR(ri; W) 2 dr(r; ).

cell 4.3: 3c<Irl;2c<r<3c

We must prove: Hgp(rj; wy) 2 0g(r; ), thus wir% +3cr; - 5¢2 > 4¢?

The minimum for the left side is attained when r% is minimal, thus when r; = 3c.
Substituting this value and dividing by 3¢ yields: w;3c¢ +rj - 3¢ 2 0. If we substitute for
the weights and multiply the result by r;, we obtain: 9¢2 + r% - 6cr; 2 0. This equality is

always true since (r; - 3¢)? 2 0.

15
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So we proved that in all conditions Pg(rj; wi) 2 Or(T; ).

Since we know that the inequalities are satisfied for each loss component r;, it is also
proved that the equalities are true for the summation over these components. So by all the
above proofs we have shown that pg(rj; w;) iS a proper majorization function for the
optimization of Qg(r;).

6. Relations with Maximum Likelihood theory

In this section we will show that an iteratively reweighted least squares (IRLS) algorithm
based on the majorization approach has a strong relation with maximum likelihood (ML)
theory. In fact we will show that the presented algorithm largely resembles the well-
known EM-algorithm (Dempster, Laird and Rubin, 1977).

Consider the linear regression model as an illustration:
y=Xb +r, 6.1)

where y is a n-vector, X a matrix (n x p) with predictor variables and b the parameter
vector to be estimated. The n-vector r contains the error or the residuals. We will assume
for simplicity that r has a distribution function f(r) with a fixed variance of 1.

The objective is to find the parameter vector b that maximizes the likelihood function:

n n
L*(b) = [1f(rj), or the more convenient form, the logarithm of it: L(b) = X log f@T.

i=1 i=1
In order to maximize the likelihood function we set its derivative with respect to the
parameter b equal to zero:

ALMb) < L)
b = =0 6.2

where x; represents a row of X. Now if we define weights for each of the n elements as:
=
Wi = Fapr (6.3)

we may write the stationary equation of the log likelihood as

n
2 WiriXj = 0. (64)

i=1

16
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This is exactly the stationary equation of the weighted least squares loss function:
LS Wiy - x'b)2 6.5
G(b)—-z-.lel(yl-xlb) . 6.5)
1=

If we assume that f(r) is the standard normal distribution, i.e. r ~ N(0,1), and we
substitute this distribution in (6.3) then the weights are completely identified and become

_-@nyPe 1/2r2(_py _
(2n)-1/26-1/2r2 r

So in this context we find the well-known result that using unweighted least squares
actually implies the assumption of standard normally distributed residuals.

When a different probability function is used we can see from (6.3) that the weights
depend on the residuals. In that case we have a similar problem as described before in the
majorization procedure, for the residuals are obtained for a set of fixed weights and the
weights are computed from the residuals. Apparently there is a strong resemblance
between IRLS and ML. When the assumption is made that the residuals are coming from a
normal/independent (N/I) distribution then it has been shown by Dempster, Laird and
Rubin (1980) that an IRLS algorithm with weights defined as in (6.3) is in fact an
example of the more general EM algorithm.

Now let's examine our majorization problem in terms of EM. The EM algorithm consists
of (not surprisingly) two basic steps : the expectation (E)step and the maximization
(M)step.

In the M-step the expected log likelihood function, M(r; r), is maximized as a function of
the parameters, thus in this step the equations in (6.2) are solved. So in an iterative
procedure the M-step provides updates for the parameters. This step corresponds therefore
with the minimization of the majorization function, which also provides updates for the
parameters. The majorization function is not the objective function, but some intermediate
auxiliary function based on the residuals derived in a previous step. Likewise the expected
log likelihood function is not the objective likelihood but also some intermediate auxiliary
function based on previous residuals.

In the E-step we must find this expected log likelihood function, which actually boils
down to computing new weights. To see this we assume that the residual vector r is a
scaled normal random variable with a N/I distribution, which means r = u€ -2 where u is

a standard normal random variable and & a positive random variable distributed
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independently of u. So we may say that the variable & symbolizes the departure of

standard normality. Now in the E-step we must find the weights to define some function:
M(r; ) =E [logf(r) I r]. (6.6)

This function is the equivalent of the quadratic majorization function, p(r; w), which was
used in the previous sections. After working out the term log f(r) (see Dempster et al.,
1980) and dropping all irrelevant terms, we find

. 2
M(r;n)=E[ X &rilr]. 6.7)
i=1

Since we know from Dempster et al. (1980, theorem 2) that

()

S OF;

= w(r), (6.8)
we find that the computation of the expectation step is actually applying the weights
function (6.3) to find new weights. By substitution of (6.8) in (6.7) and multiplying by -1
we now find that the intermediate function has the following well-known form:

12 2
M(r; 1) =§_21Wiri . (6.9)
1=

The shape of the function M(r; r) actually depends on the weights and therefore we may
also write this function as M(r; w). It is clear now that this weighted quadratic function
corresponds with the majorization function p(r; w), which is also a weighted quadratic
function depending on previous residuals through the weights w.

So the relation between the EM algorithm and our majorization (IRLS) algorithm can be
summarized as follows: in the M-step we minimize a weighted least squares function,
while in the E-step new weights are computed as the expected values of a random variable
given the previous residuals, which define a new quadratic function.

We already showed that both procedures consisted of a step in which weights were
computed. In addition we can also show that these weights are exactly the same. First
notice that the weights which we defined in (3.5), (4.5) and (5.5) could also be defined in
a more general way as:

w(r) = %m). (6.10)
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This definition is valid for all objective functions that we considered in previous sections.
It is now quite easy to see that this definition is exactly the same as the definition in (6.8),
provided that the distribution function, f(r), is an exponential function of the following
form:

fr) = ae (), (6.11)

where a is a constant and ¢(r) is one of the objective functions discussed before.
Substituting (6.11) in (6.8) yields:

g 0@ (-y(r)) _ Y(r)
a e 9 ¢ r

w(r) = ) (6.12)

which proves that the weights are exactly the same.

From the above relation between the maximum likelihood theory and the majorization
approach we can now get a better understanding about the meaning of the choice of the
resistant functions. The shape of these functions correspond with the assumed shape of
the N/I distributions of the residuals. Thus if we take as our objective function a hard
redescender like for example the biweight, we implicitly assume a heavy tailed distribution
of the residuals. On the other hand minimizing the L; norm corresponds with much

thinner tails.

The objective functions that we used were introduced as so-called W-estimators because
we showed that in order to optimize them we could define convergent algorithms via
iteratively reweighted least squares. It is now also explained why these estimators are
sometimes called M-estimators, for they are based on generalizations of maximum
likelihood estimators.

7. What's the use

The majorization approach for resistant procedures was explained by assuming a set of
residuals r, defined as the difference between the data and some kind of model,

r=z-z* (7.1)

In all objective functions it was implicitly assumed that r is a n-vector and furthermore
that the n observations or objects which constitute z are independent. Because of this
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general approach it follows that we are able to use the described resistant procedures for
any problem that can be written in the form of (7.1). In other words we can insert for z* a
number of different linear models and may directly apply one of the resistant procedures.

The first obvious illustration which can be written in this form is the linear multiple

regression problem:
r =z - Xbh. (7.2)

Here the matrix X (n x p) is a set of predictor variables, which are combined by the
weights b to predict the data z (criterion variable) as good as possible. A lot of research in
the context of robustness has already been done concerning this problem. For instance
Rousseeuw & Leroy (1987) and Hampel et al. (1987) are among the most prominent
references.

The three resistant functions from this paper have very frequently been applied to the
multiple regression problem, both in Monte Carlo studies as with emperical data. It is clear
from the many literature that these functions are indeed very useful for the analysis of
contaminated data sets.

A direct generalization of (7.2) is the multivariate multiple regression problem:

R =7Z-XB. (7.3)

It this problem we aim to predict m variables z instead of a single one. Now B is a matrix
(p x m) with regression weights. Since we can split the problem from (7.3) in m
independent problems of the form:

rj = z; - Xbj, (7.4)
multivariate multiple linear regression can also be handled by the majorization approach.

Finally we mention the principal component (PCA) problem. The PCA problem can be
written in exactly the same form as (7.3), except for a transpose sign for B, since we can
never have more components than variables. However, the matrix X is in PCA a set of
unobserved variables, also called principal components. Another difference with (7.3) is
that p (here the number of principal components) can never be larger than m (the number
of observed variables). Like in multivariate multiple regression we can also split the
problem as in (7.4). Although a resistant procedure for PCA obviously differs from one
for regression analysis the general majorization approach can still be used. In PCA there is
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only an additional step within the weighted least squares part to compute X. This,
however, does not basically change the general problem formulated in (7.1).

These are only a few illustrations for which the general approach for optimizing resistant
loss functions can be used. With the theory from this paper we now have a tool to study a

whole family of linear models with respect to their behaviour in relation to outliers.
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