THE TUNNELING METHOD APPLIED TO METRIC
MULTIDIMENSIONAL SCALING:
PROGRESS REPORT 1

Patrick Groenen

Department of Data Theory

University of Leiden

RR-90-03

1. Introduction.

In this progress report we will focus on one aspect of metric multidimensional scaling. One of
the problems of this technique is that the solution given is not necessarily the best solution.
Other configurations may exist that have a better fit. Therefore we intend to develop an
algorithm within the SMACOF framework that finds the best solution within a reasonable
amount of time.

Finding the best solution corresponds in mathematical terms to finding the global minimum of
the stress function. Several local search procedures are well known, like the gradient method
proposed by Kruskal (1964a, 1964b) and the SMA COF algorithm of De Leeuw (1977) and De
Leeuw and Heiser (1980). Global optimization methods usually consist of a local search phase
and a global search phase. Here we will use the SMACOF algorithm during the local search.
For the global search we will develop the tunneling approach of Montalvo (1979), Gomez and
Levy (1982), Levy and Gomez (1984), still remaining within the SMACOF theory.

A short summary of global optimization techniques will be given here. A recent overview of
developments in this field is given by T6rn and Zilinskas (1989). They distinguish six types of
global optimization algorithms. The first type is formed by covering methods that exclude
subregions that do not contain the global minimum. Klaassen (1989) has applied this method to
the stress function of multidimensional scaling. Unfortunately his method was only successful
for very small problems. Another covering method was used by Hubert and Arabie (1986).
They used dynamic programming successfully for one-dimensional scaling. The second type is
formed by random search methods like pure random search, singlestart and multistart. Random
configurations are generated for starting a local search procedure that yield a local minimum and
the lowest stress function value is considered to be the global minimum. The third type is
formed by clustering methods. These methods refine the random search methods in that
configurations leading to the same local minimum are evaluated only once (Rinnooy Kan and
Timmer, 1987). An example of this method is the multi level single linkage algorithm of
Timmer (1984). The fourth type is formed by methods approximating the level sets. The idea is
to find a solution for which a volume measure between function surface and all solutions with
the same function value equals zero. The fifth type is formed by methods approximating the
objective function. Here a theory is developed which is based on a statistical model of the
function. The unknown function values are treated as random variables. This class of methods
seems very efficient for oscillating functions of one parameter only and is also applied to
functions that are expensive to evaluate. For one-dimensional scaling this method was used by
De Soete, Hubert and Arabie (1988). However, the implementation of simulated annealing was
not satisfying. The last type is formed by generalized descent methods, where the function is
modified to guarantee a lower minimum. Trajectory methods modify the differential equation
describing the local descent trajectory. Penalty methods modify the function itself to prevent
returning to local minima found in previous iterations.

The tunneling method, that we will use here to find the global minimum of the stress function,
is a penalty method. It can be described by the following analogy. Suppose we wish to find the
lowest spot in a selected area in the Alps. First we pour some water and see where is stops.
This is the local search. From this point we dig tunnels horizontally until we come out of the
mountain, the so called global search. Then we pour water again and dig tunnels again. If we

stay underground for a long time while digging the tunnel, we conclude that the last spot was in
fact the lowest place in the area. An important and attractive feature of the tunneling algorithm is
that successive spots are always lower.

In section 2 we will reformulate the problem in mathematical terms and present the general
methods we use to solve the problem. Section 3 applies these methods to our problem. Some
basic aspects are investigated empirically in section 4 and a discussion, conclusions and
directions for future research is given in section 5.

2. The MDS minimization problem.

In this section we will present the definition of the problem in mathematical terms and present
the mathematical methods we need to solve our problem.

2.1. Definition of the problem.

Suppose we have the dissimilarities of all the pairs of the n stimuli. In metric
multidimensional scaling we want to find p coordinates x; for each stimulus in such a way that
the distance between every pair of stimuli i, j are as equal as possible to the dissimilarity. In
mathematical terms we want to minimize the stress function

o(X) = V1/25,38; — dy(X))? ().

over X, where Sij is the dissimilarity between stimuli i and j, X is an n by p matrix of
coordinates and d,-j(X) the Euclidean distance between two stimuli. De Leeuw (1977) and De
Leeuw and Heiser (1980) have given an convergent algorithm for minimizing (1).
Unfortunately, the algorithm is convergent to a local minimum, not necessarily to a global
minimum. Mathar (1989) notices that local minima are more likely to occur when the
dissimilarities are far from Euclidean. It seems relevant to develop an algorithm for finding a
global minimum.

Heiser and De Leeuw (1979) note that their algorithm is very likely to find a local minimum in

one-dimensional scaling since it is a combinatorial problem. Defays (1978) proposed an
algorithm for one dimensional scaling. The dynamic programming approach of Hubert and
Arabie (1986) guarantees to find a global minimum for moderate size problems (up to 20
stimuli). Simulated annealing used by De Soete, Hubert and Arabie (1988) was rather
disappointing. Contrary to theoretical expectations the method didn't perform better than the
more traditional pairwise interchange strategy. In this report we will develop a method which
can be used both in the one-dimensional case and the multidimensional case.
As stated above the tunneling algorithm tries to find a global minimum in two phases. First we
find a local minimum using SMACOF theory (see section 2.2). Second we try to tunnel to
another configuration with exactly the same STRESS. Figure 1 shows this situation. In the first
phase a local minimum 6(X*) is found at X* and we wish to tunnel to configuration X° with
STRESS 6(X*). Once arrived at X° we go to phase one again to find the next local minimum.

T L ol
o) | | |
| | |
? | | |
| | |
| | |
TN |
oX*) T

| 1 L

X* x° X%

- X
Figure 1. A simplified example of the stress function with a local minimum at X* and

another configuration X° or X°® with the same STRESS.

In the second phase we want to find another configuration X° with 6(X°) — 6(X*) = 0. This
may be achieved by minimizing (6(X) — 6(X*))2. However, we want to avoid the solution
X° = X*, This can be achieved by dividing by tr(X — X*)'(X — X*). In formula the tunneling
phase comes to the minimization of the tunneling function

(6(X) - o(X*))?

TX) =X XX =X - 2)

The graphical display of the tunneling function in Figure 2 can be derived from Figure 1. First
we note that the tunneling function has two zero points, X° and X°°, that have stress values
equal to the stress value at local minimum X*. The second feature of the tunneling function is
the pole at X* to stay away from the solution X*. Thirdly, we know that T(X) is always
positive or zero and reaches zero only if the stress value of X equals o(X*).

Three problems arise when minimizing (2). The first is how to minimize a function that
consists of a fraction. This will tackled in section 2.3 by making use of fractional programming
(Dinkelbach, 1967). The second problem is that the numerator of T(X) is a rather complicated
function. Therefore we will develop a more simpler form in section 3.1 by majorizing the
numerator. The general idea of majorization is explained in section 2.2. The third problem is
how to find a reasonable starting configuration, since the last local minimum is of no use; this
matter will be discussed in section 3.3.

log T(X)

X* x° X
— X

Figure 2. A simplified example of the tunneling function with a pole at X* and a minimum
at X°

2.2. Majorization.

Majorization is a method used to simplify the minimization of complicated functions. It will be
illustrated here by majorization of the stress function (1). The central idea is to replace the
original function o(X) by an auxiliary function pu(X,Y) at the supporting point Y. The
majorizing function p(Y,Y) is equal to o(Y) at Y and at other places larger than or equal to the
original function. Majorization in multidimensional scaling has been applied in a variety of
settings by among others De Leeuw (1977), De Leeuw and Heiser (1980) and Meulman
(1986). As an example we show how to the majorize the stress function 6(X) following the
SMACOF theory.

An alternative way to write stress function (1) is

o2(X)

it

122;%;8 + n/20X'’X — X' BX)X 3)

B(X) B*(X) -B*X) , 4

with B*(X) the diagonal matrix with elements u'B°(X) on the diagonal and Bo(X) a matrix with
off diagonal elements

Ry
o = i RN .
bij(X) = dij(X ifi #jand dl](X);&O,

bg.(X) =0 otherwise. (5)

Without loss of generality we assume in the following that the sum of squares of the
dissimilarities is unity. The complicated part of 3 resides in the last term and is caused by the
distance function d;i(X). This last term can be majorized by using the Cauchy-Schwartz
inequality in the following form

di(X)a(Y) = Vx; —X'(x; =)V (i ~y)' (i - ¥) 2 &% = X)'(yi — ¥))
X —x)(yi—y)
I (e ©

Inserting the right side of (6) in (3) yields after appropriate manipulations
o2(X) < u¥(X,Y) = 172 + n/2uX'X - rX'B(Y)Y . ¥))
The majorizing function p2(X,Y) is a quadratic function in X and has its minimum at
X=n1B(Y)Y . ®)

De Leeuw and Heiser (1980) call X the Guttman transform. The chain
o2(X) < pA(X,Y) < uX(Y,Y) = 6%(Y) shows that the stress function can always be decreased by
minimizing the majorizing function with respect to the supporting point Y. The SMACOF
algorithm amounts to repeatedly computing the Guttman transform of the previous
configuration.

2.3. Fractional programming,

The tunneling function (1) is a fraction of two functions. The fractional programming
algorithm (Dinkelbach, 1967) can be used to minimize a ratio of two functions (see Heiser,
1981 p. 219). The only assumption made is that the denominator is greater than zero for each
feasible X. This means that X* is not considered to be a feasible X. We now introduce a
concave function of the real valued parameter ¢

F(X,9) = (6(X) — 6(X*))? ~ gtr(X - X*)'(X ~X*) . ®

The idea is that we want to find a g* for which F(X,g*) = 0; this is a relatively simple problem
because of the concavity of F(X,q). Furthermore, the minimum of F(X,q*) over X is attained at
the same point where the original function is minimized (Dinkelbach, 1967, p. 494).

The fractional programming algorithm is

q+ «— qO
X+ « argmin F(X,g*) for fixed ¢*
If F(X*,¢%) > o then stop

(o(Xt) — o(X*))2
r(XT — X*)(XT - X*)

ESN W N =

q+

5. goto2

where ® is a small negative value. The algorithm should lead us to a minimum of our tunneling
function T(X). The sequence of F(X,q) is approaching zero from below.

We must be careful with the starting value of ¢. Initializing ¢ with zero would cause X in
step 2 to be the minimum of (6(X) — 6(X*))2, Note that for large g the last term of (9) gains
importance in step 2.

3. A tunneling method for minimizing STRESS.

Here we will develop a method for minimizing the tunneling function and propose an
algorithm. In section 3.3 some possible starting configurations for the tunneling algorithm are
given.

3.1. Majorization of the numerator.

In step 2 of the fractional programming algorithm we have to find the minimum of F(X,q) for
a fixed q. The second part (derived from the denominator) is a quadratic function in X and does
not give much problems. The first part (derived from the numerator), however, is rather
complex. It can be written as

(6(X) ~ o(X*))?

[0(X*)]2 + [6(X)]2 - 26(X*)o(X)
[+ [T - 20X 1/25,3,(8; - d;(X))2. (10)

The first term on the right hand side [o(X*)]2 is a constant and [0(X)]? can be majorized using
the SMACOF theory. The extra complication of (10) is the last term —26(X*)c(X). One
important step in majorizing this term is to realize that o(X) is the distance between the vector
with dissimilarities §;; and the vector with elements d;;(X). Applying the Cauchy-Schwartz
inequality on the vector of residuals gives

oX)o(Y) = V123,55, - 42 125,38, - d(Y))2
SX)O(Y) = 1/25,3,8; - dyK))(E; — dy(Y)) . (11)

Multiplying both sides with ~26(X*) and dividing by o(Y) yields

o(X*)
o(Y)

°(X))22[d,,(Y>d,,(x> 5,4,001. (12)

“26(X#o(X) < - ZL5 582 - 5,4,00)] -

Let C contain each term that is not a function of X. Then (11) can be majorized as follows:

o(X*))811 + O'(X*)
(Y) o(Y)
(0X) —o(X*)2 < C+ n2uX'X - uX'B(Y, X)X (13)

(6(X)-o(X*)? < C+12%%,d%;(X) - ZZ/[(I— u(Y)] d;X)

where

o(X*) o(X*) ,
C = [6(X*)]2+1/2 - Y d.(Y)3;:, 14
[6(X*)12 + 1/ Py e 2.24,(Y)3;; (14)
B(Y,X) = B*(Y,X)-Be(Y.X) (15)

with ﬁ*(Y,X) the diagonal matrix with elements u'§°(Y,X) and §°(Y,X) with off diagonal
elements

a- G()((;)))B,.j + G(?Yﬂ;ld,-j(Y)
~ O O e s
boi(Y,X) = X , if i #j and d(X) #0,

bo(Y.X) = 0 otherwise. (16)

We can simplify (13) to a quadratic function by majorizing it again according to the SMACOF
theory. However, this result is only valid if the numerator of EOU(Y,X) is non-negative for all
combinations ij. This factor becomes negative only if 6(X*)/6(Y)>1, or 6(Y)<o(X*). Suppose
that Y equals the previous X in the iterative process. Now it is easy to see that the factor can be
negative only if the previous configuration has a lower STRESS than X*. In that case we
immediately stop since we have found another configuration with a lower STRESS than X* and
thus have reached our primary goal.

Majorizing the right side of inequality (13) using the Cauchy-Schwartz inequality yields a
term —trX'B(Y,Z)Z. This result is valid for every Z, including Z = Y. Therefore it is true that

(6(X) —o(X*))2 < C+n2uX'X - uX'B(Y,Y)Y . amn.

From (16) we can derive

o(X*)| §; oX*) o(X*) o(X¥)
1 —_ = . 0.. Y ——
[G(Y)]dii&v oY) [1 oY) Jb Sy U

B0, (YY)

(0o(X) —-o(X*))2 < C+n2uX'X ——|:1 - G(X*)]U'X'B(Y)Y __n_O_(&*_)_ aX'Y. (19)
o(Y) o(Y)

We have achieved a simple function quadratic in X by doubly majorizing the numerator.

3.2. Merging the majorization result and fractional programming.

In order to apply the fractional programming algorithm we have to be certain that all
assumptions are fulfilled. The positivity assumption of the denominator is violated only if
X = X*. Thus we must either define X* not to be a feasible X or to add a small positive
constant to the denominator. We choose here for the first option.

The second step of the algorithm requires that a X+ is found that minimizes F(X,q*) for g*
fixed. Now we can use the majorization result of the previous section.

o(X*) n o(X*)
F(X.g%) € C+ n2uX'X — (1 - ==t X'B(Y)Y ———2 &X'Y
(X,q™) + nf2tr (G(Y))tr (Y) o tr
_ grEX'X +aXFX* - 20X 'X*]
F(X,g*) € C—qtueX*X* + (nf2 - gH)rX'X
~ X [(1 _OXN ey + P& v q"’X*] 20)
o(o(Y)

Since (20) is a quadratic function in X the following algorithm can be used.

1 o(X¥*) n o(X*)
2a. _))X+ 4 —— Xt o gt X F
a. X - p—r [(l oXh) B(X™) + o X q]

2b. if 6(Y) < 6(X*) then stop

2c. ifre(XT-X))Xt-X)<wthengoto3
2d. Xt X

2e. gotola.

3.3. Choosing a start configuration of the tunneling phase.

Since X* is not a feasible X of the tunneling function we have to choose a start configuration
different from X*. The most straightforward option is to use a small pertubation of X*, like
X* + € with € normally distributed with mean zero and a small variance. Another option is
using one of the previous configurations before reaching X*, for example the last one or the
configuration 5 iterations before the last one. The third option is to select the p + 1 worst fitting
points, apply the SMACOF algorithm (that will lead to a perfect solution of the selected points)
and replace their coordinates in X* to achieve the start configuration. These configurations will
have to be tested empirically on their merits.

4. Simulation results.

In this section we will look at the strength of the pole. The pole of the tunneling function (2)
should be strong enough in order to cancel out the local minimum at X*. If it is too weak the
tunneling function will asymptotically go to zero as X approaches X*. Then minimization of the
tunneling function might yield X* as minimum, being the solution we wanted to avoid. In other
words, we have to check whether T(X) actually increases when we force X to approach X*.

It can be seen quite easily from our algorithm that a weak pole will lead to X*. Suppose that
X is near X* and that the pole is too weak. In step 4 of the algorithm in section 2.3 g* is
defined as T(X). Because of the pole being too weak g+ approaches zero. The importance of g+
can be seen in section 3.2. There step 2a shows that when g+ approaches zero this step amounts
to minimizing (6(X) — 6(X*))2. This will lead to the minimum of X*. Thus we must make sure
that when X approaches X* T(X) gets large.

In order to check this we used data about the Mani collection of archaeological deposits
reported by Hubert and Arabie (1986) who took it from Robinson (1951). We performed a two

dimensional scaling analysis using the metric SMACOF algorithm. We set the convergence
criterion strong (10-10) so that we have an accurate estimate of X*. After 44 iterations
convergence was reached with STRESS 0.0809031525. Then SMACOF was performed again
using the same start configuration. Since X gets nearer to X* every iteration we computed T(X)
for every iteration. We also computed two other fractions. Let v(X) = (6(X) — 6(X*))? and
2(X) = tr(X — X*)'(X — X*). Furthermore, the values of v(X)/t(X)2 and v(X)-3/t(X)2 are
reported in Table 1. A graphical display of the fractions on a log scale is shown in Figure 3.
Note that Table 1 only reports 43 iterations since T(X) equals zero in iteration 44 and the
fractions are undefined.

12 -
10 -
8 4
6 -
44
2

€Ww—

0 10 2 30 40 50

Figure 3. Behavior of T(X) and some fractions of v(X) and t(X) as X approaches X*. The
fractions are given vertically on a log scale and the iteration numbers
horizontally. The data stem from the Mani collection.

In the plot we clearly see that the pole of the tunneling function is not strong enough. Two
alternative ratios do result in a pole that is strong enough. Whereas the ratio v(X)/t(X)?2 has only
towards the last iterations high values, the ratio v(X)-3/7(X)2 increases much faster. Therefore
the latter seems most promising.

In this section we have seen that the strength of the pole in the tunneling function is not strong
enough.

10

Table 1. Behavior of some fractions of the numerator and denominator as X approaches
X*, The data used are the Mani collection data.

vX) wX) v(X)?

Iteration STRESS difference v T TX) =
STRES X) X) X) s W2 X2
0 .3537639261
1 .0943974495 2593664766 1.821E-04 1.365E-02 .0133409122 977 7.243E01
2 .0907912176 0036062319 9.777E-05 1.047E-02 0093346847 891 9.013E01
3 .0886526417 0021385759 6.005E-05 8.052E-03 0074581063 926 1.195E02
4 0869873466 0016652951 3.702E-05 6.106E-03 0060624406 993 1.632E02
5 .0856132582 0013740884 2.219E-05 4.545E-03 0048811152 1074 2.280E02
6 .0844736300 .0011396282 1.275E-05 3.313E-03 0038482014 1.162 3.253E02
7 .0835444994 0009291306 6.977E-06 2.362E-03 0029534877 1.250 4.734E02
8 .0828080853 0007364141 3.629E-06 1.648E-03 0022015067 1,336 7.011E02
9 .0822433637 .0005647216 1.796E-06 1.127E-03 0015938295 1414 1.055E03
10 .0818246423 .0004187214 8.491E-07 7.563E-04 0011226886 1.484 1.611E03
1 .0815238915 .0003007508 3.853E-07 4.994E-04 0007715629 1.545 2489E03
2 .0813139508 0002099407 1.688E-07 3.251E-4 0005190146 1.596 3.886E03
13 .0811709747 0001429761 7.173E-08 2.092E-04 0003428577 1.639 6.119E03
4 .0810756085 .0000953662 2.974E-08 1.333E-04 0002231113 1.674 9.705E03
15 .0810130823 0000625262 1.208E-08 8 426E-05 .0001434194 1.702 1.548E04
16 0809726568 0000404255 4.831E-09 5.292E-05 .0000912882 1.725 2.482E04
17 .0809468127 .0000258441 1.906E-09 3.306E-05 .0000576531 1.744 3.994E04
18 .0809304381 0000163746 7.445E-10 2.057E-05 0000361881 1.759 6.447E04
19 .0809201367 .0000103015 2.885E-10 1.276E-05 0000226075 1.772 1.043E05
20 .0809136919 0000064448 1.111E-10 7.893E-06 .0000140729 1.783 1.692E05
2 0809096773 0000040146 4257E-11 4.872E-06 0000087374 1.793 2.748E05
2 .0809071849 0000024924 1.626E-11 3.003E-06 0000054150 1.803 4472E05
B .0809056415 .0000015434 6.195E-12 1.848E-06 0000033523 1.814 7.288E05
24 .0809046875 0000009540 2.356E-12 1.136E-06 0000020744 1.826 1.190E06
Pal .0809040987 .0000005888 8.953E-13 6.973E-07 .0000012838 1.841 1.946E06
p.) 0809037356 .0000003631 3.400E-13 4.276E-07 0000007951 1.859 3.189E06
z .0809035118 .0000002238 1.291E-13 2.618E-07 0000004931 1.883 5.241E06
8 0809033740 0000001379 4904E-14 1.601E-07 0000003064 1914 8.643E06
9 0809032891 0000000849 1.864E-14 9.766E-08 0000001909 1.955 1.432E07
30 .0809032367 .0000000523 7.091E-15 5.941E-08 0000001193 2.009 2.385E07
31 .0809032045 0000000322 2.700E-15 3.602E-08 0000000750 2.081 4.005E07
32 .0809031846 0000000199 1.029E-15 2.173E-08 0000000473 2.178 6.793E07
3 .0809031723 .0000000123 3.921E-16 1.302E-08 .0000000301 2.311 1.167E08
3 .0809031648 .0000000076 1.494E-16 7.739E-09 .0000000193 2495 2.041E08
35 .0809031601 0000000047 5.684E-17 4.544E-09 .0000000125 2752 3.651E08
3% .0809031572 0000000029 2.153E-17 2.625E-09 0000000082 3.125 6.733E08
37 .0809031554 0000000018 8.092E-18 1.483E-09 0000000055 3.681 1.294E09
38 .0809031543 0000000011 2.995E-18 8.110E-10 .0000000037 4.553 2.631E09
» .0809031536 0000000007 1.078E-18 4233E-10 0000000025 6.017 5.796E09
4 0809031531 0000000004 3.689E-19 2.055E-10 0000000018 8.734 1.438E10
41 .0809031529 0000000003 1.148E-19 8.858E-11 .0000000013 14.628 4.318E10
42 .0809031527 .0000000002 2.923E-20 3.046E-11 0000000010 31.506 1.843E11
43 .0809031526 .0000000001 4.345E-21 5.950E-12 0000000007 122.735 1.862E12

5. Discussion and conclusions.

In this paper convergent algorithms were derived that are necessary for applying the tunneling
method to metric MDS. We have used majorization to prove convergence and fractional
programming to deal with the denominator of the tunneling function.

However, the simple tunneling method needs to be refined; provisions for a stronger pole
must be incorporated. The solution for creating a stronger pole was given first by Levy and

11

Gomez (1985). A stronger pole is achieved by raising the denominator to the power K. Since
the minimum does not change under any monotone transformation of the tunneling function we
might as well leave the denominator as it is and raise the numerator to power 1/k instead. The
tunneling function would change to

lo(X) — o(X*)ItA

X = FX-XHX-X5 @

The simulation results showed that we need at least K = 2. For majorizing the numerator of (21)
we can use a generalization of the inequality used by Heiser (1987) to majorize absolute
residuals. This will be described in a forthcoming paper.

However, Torn and Zilinskas (1989) temper the optimism of the success of the tunneling
method with a strong pole. They expect difficulties when k¥ becomes to large. The hypersurface
of the tunneling function might become too flat and the zero point of the tunneling function
could be missed. In their opinion it is impossible to guarantee numerical stability.

When the method stops it cannot find a solution with the same stress, so the last minimum is
candidate global minimum. Timmer (1989, personal communication) has a theoretical objection
against the method. First the tunneling method can not be proven always to converge to the
global minimum. Moreover he claims that since the minimization of the tunneling function is
highly related to the minimization of the objective function itself not much is gained by
tunneling in terms of efficiency.

Therefore further research needs to be done on the effectiveness and numerical stability of the
algorithm. The use of majorization has to be evaluated. It is particularly effective when the
majorizing function is close to the original function. If not, only small improvements can be
expected each iteration.

The tunneling algorithm of Gomez and Levy (1982) also introduces a moving pole with a
similar function as the pole at X*. It is used to avoid getting stuck at a stationary point that is
not a minimum of the tunneling function. We do not know if our algorithm needs such a
moving pole. If so, a generalization of the fractional programming algorithm should be
developed allowing for multiple factors in the denominator of the tunneling function.

12

References.

De Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. J.R. Barra
et al. (Eds.), Recent developments in statistics . pp.133-145. Amsterdam: North-Holland.

De Leeuw, J., Heiser, W.J. (1980). Multidimensional scaling with restrictions on the
configuration. P.R. Krishnaiah (Ed.), Multivariate analysis, Vol. V, pp. 501-522.
Amsterdam: North-Holland.

De Soete, G. Hubert, L., Arabie, P. (1988). On the use of simulated annealing for
combinatorial data analysis. In: W. Gaul and M. Schader (Eds.), Data, expert, knowledge
and decisions. Berlin: Springer-Verlag.

Defays, D. (1978). A short note on a method of seriation. British Journal of Mathematical and
Statistical Psychology, 3, pp.49-53.

Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, Vol 13,
no. 7, pp. 492-498.

Gomez, S., Levy, A.V. (1982). The tunneling method for solving the constrained global
optimization problem with non-connected feasible regions. Lecture notes in mathematics,
909, pp.34-47. Springer-Verlag.

Heiser, W.J. (1981). Unfolding analysis of proximity data. Doctoral dissertation. Leiden:
University of Leiden.

Heiser, W.J. (1987). Correspondence analysis with least absolute residuals. Computational
statistics & Data Analysis, S, pp. 337-356.

Heiser, W.J., De Leeuw, J. (1977). How to use SMACOF-I. (3nd ed. 1986). Research report
UG-86-02. Leiden: Department of Datatheory.

Hubert, L.J., Arabie, P. (1986). Unidimensional scaling and combinatorial optimization. In: J.
De Leeuw, W.J. Heiser, J. Meulman and F. Critchley (Eds.), Multidimensional Data
Analysis, pp.181-196. Leiden: DSWO Press.

Klaassen, P. (1989). Globale optimalisatie & multidimensional scaling. Unpublished master's
thesis. Rotterdam: Faculty of Economics, Erasmus University.

Kruskal, J.B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29, pp. 1-28.

Kruskal, J.B. (1964b). Nonmetric multidimensional scaling: a numerical method.
Psychometrika 29, pp.115-129, '

Levy, A.V., Gomez, S. (1985). The tunneling method applied to global optimization. P.T.
Boggs, R.H. Byrd, R.B. Schnabel (Ed.), Numerical optimization 1984 (SIAM
Philadelphia), pp.213-244.

Mathar, R. (1989). Convex analysis and algorithms in multidimensional scaling. Report no.
120. Augsburg: Institut fiir Mathematik.

Meulman, J. (1986). A distance approach to nonlinear multivariate analysis. Leiden: DSWO
press.

Montalvo, A. (1979). Development of a new algorithm for the global minimization of
functions. Ph.D. thesis in Theoretical and applied Mechanics. Universidad Nacional
Autonoma de Mexico.

Rinnooy Kan, A.H.G., Timmer, G.T. (1987a). Stochastic global optimization methods part I:
clustering methods.. Mathematical Programming 39, pp.27-56.

13

Rinnooy Kan, A.H.G., Timmer, G.T. (1987b). Stochastic global optimization methods part II:
multi level methods.. Mathematical Programming 39, pp.57-78.

Robinson, W.S. (1951). A method for chronologically ordering archaeological deposits.
American Antiquity, 16, pp.293-301.

Timmer, G.T. (1984). Global optimization: a stochastic approach. Ph.D. thesis. Rotterdam:
Erasmus University.

Timmer, G.T. (1989). Personal communications.

Toérn, A., Zilinskas, A. (1989). Global optimization. G. Goos and J. Hartmanis (Eds.),
Lecture notes in computer science, Vol. 350. Berlin: Springer-Verlag.

