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- ABSTRACT -

This paper proposes a method to cluster objects that are measure-
red on a set of categorical variables with mixed measurement
levels. The new feature of the approach is that the scaling of
variables, and thereby the construction of distances between
objects, and the clustering of objects are performed simulta-
neously. The method works by minimizing the value of a loss func-
tion that finds Principal Components of the input variables and
that has been constrainted by a restriction on the objects
scores. A computer program, called GROUPALS, using an Alternating
Least Squares algorithm, was developed to apply the method to
actual data.
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CHAPTER ONE

INTRODUCTION

Purpose of the study

This section introduces the problem of this study.

In social sciences it is common practice to investigate social
phenomena by comparing groups of people.

In some cases the groups of interest can be identified by a few
variables, for instance as in experimental research. Frequently
however, we want groups to be composed of people that differ on
a considerable number of discriminating variables.

This study is concerned with the latter kind of analysis:

The problem of this study is, given datamatrix H
with m categorical variables and n objects, how
to £find that partition of n objects 1into k
mutually exclusive groups (k<n) that is optimal
with respect to the internal cohesiveness and
the external isolation of these groups.

Throughout this study, the above stated problem will be referred
to as 'the central problem'.

The terms internal cohesiveness and external isglation are due to
Cormack (1971) and they need some clarification here.

The concept of internal cohesiveness refers to the pooled within-
groups variance. The internal cohesiveness is maximized by

minimizing the pooled-within groups variance. We use the criterion
of internal cohesiveness to ensure that groups (= clusters) are as
tight as possible.

External isolation can be expressed in terms of between-groups
variance. By maximizing the total between-groups variance, we are
looking for clusters that are as far apart as possible.

In general, internal cohesiveness and external isolation are
desirable properties of cluster solutions. Figure 1.1 is copied
from Gordon (1981) and illustrates the two concepts.
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Hllustration of the concepts of the cohesion and isolation of clusters:
{a) clusters are cohesive and isolated ; (b) clusters are isolated but not cohesive: (c)
two cohesive clusters which are linked by several intermediate points.

FIGURE 1.1

‘Another point of the central problem is the use of categorical

variables, because many data of social science research can be seen
as categorical measures.

The purpose of this study is to develop a method to solve the
central problem.

The study yields two products. Firstly this paper, that accounts
for the theoretical considerations of the proposed method. Secondly
a computerprogram, named GROUPALS, to apply the method to actual
data.

Summary of contents

This section provides a short description of the
contents of the report.

Chapter 2 discusses a number of commonly used approaches to related
problems, mainly from the field of cluster analysis.

In chapter 3, we translate the concepts of homogenity and discrimi-
nation into a suitable loss-function. Furthermore, a procedure to
minimize the value of this function is proposed.

Chapter 4 deals with the implementation and testing of the program.
In chapter 5, some illustrative examples are given.

Finally, chapter 6 concludes the report and provides some topics
for further research.

An appendix, containing the necessary information to operate the
GROUPALS program, is inserted at the end of the paper.
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CHAPTER TWO

CLUSTER ANALYSIS

The first thing to notice regarding the central problem of this
study is the fact that we want to find a (fixed) number of groups.
We therefore shift our attention to the field of cluster analysis.

Cluster analysis can be looked upon as a two-stage procedure
{Gordon, 1981).

The first stage consists of the preparation of the raw data.
Section 2.2 deals with this phase.

The second stage is the actual application of a particular
clustering technique. Section 2.1 describes various forms of
cluster analysis and their use.

In section 2.3 we discuss how the central problem would have to be
solved by using current methods.

Clustering technigues

This section describes various forms of cluster
analysis and their major characteristics.

Cluster analysis attempts to solve the following problem (Everitt,
1980):

Given a number of objects or individuals, each of
which 1is described by a set of measurements,
device a classification scheme for grouping the
objects into a number of classes such that objects
within classes are similar in some respect and

unlike those of other classes. The composition of
any groups is not known at thé start of the inves-
tigation.

Cluster analysis passes under various names: Q-analyis, typology,
grouping, clumping, classification, numerical taxonomy, unsuper-
vised pattern recognition and unsupervised learning.
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Gordon (1981) distinguishes four principal forms of cluster
analysis, viz. hierarchical, partition, clumping and geometrical
methods. All four methods shall be discussed briefly.

In hierarchical technigues classes themselves are classified into
groups. Repeating the classification process at different levels
yields a hierarchically nested series of groups, called a tree.
There are various hierarchical clustering schemes. Differences
between these schemes arise because of different ways of defining

the distance between an individual and a group containing several
individuals, or between groups of individuals.

In general, the splitting and merging strategies are designed
optimally at each level. However the partition at a given level
need not be the best possible (Gower, 1967). A common mistake in
using hierachical techniques is to view the partition at some level
as the best available.

Hierarchical techniques are often useful when attention is focussed
on hierarchical inter-dependencies among groups and individuals,
that is, when the interest lies largely in the overall tree
structure.

Most applications come from the field of biological taxonomy.

Partitioning methods (also called optimization technigues, named
after the way in which the partition problem is solved) try to find
a partitioning for a given number of groups, which is optimal with
respect to a criterion. The classes are mutually exclusive, thus
forming a partition of the set of individuals.

The criterion is usually specified to minimize some sort of intra-
cluster distance function. The most popular clustering criterion is
the minimization of the trace of the pooled-within group matrix of
sums of squares and cross products (Blashfield, 1976).

An advantage of partitioning methods is that they permit relocation
of objects, that is, objects can be allocated to several clusters
several times, before the final solution is reached. On the other
hand problems arise with respect to local minima and starting
configurations.

Gordon's third form of cluster analysis is the collection of the so
called clumping methods. As in partitioning methods most clumping
methods are designed to minimize an objective function. However, in
clumping methods the restriction that groups should be mutually
exclusive has been dropped. Thus, the groups are allowed to over-
lap. Such overlapping groups are called clumps.

There are a number of cases in which classification must permit
overlap between the classes if it is to be of any value. For

example, in language studies, words may have several meanings. If
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they are being classified through their meaning, they may belong to
several groups.

GCeometrical techniques (or ordination methods) make up the last
kind of cluster methods. Geometrical methods are not real cluster
methods in that they do not provide us with direct information
concerning group membership. They merely seek a low-dimensional
representation of objects, in which the objects that are similar to
one another are represented by points that are close together.

The representation is assessed by eye in an attempt to establish
whether or not the points fall into distinct, well separated
clusters.

Techniques that are employed are Principal Components Analysis,
Multidimensional Scaling, Multidimensional Unfolding and Correspon-
dence Analysis.

For geometrical methods, it is essential that the bulk of relevant
information is retained in the representation. With some sets of
data these methods may not give an adequate representation in two
or three dimensions, and so visual examination may not be possible.

If we crossclassify these four methods by the way they work to find
the optimal group partition, we obtain table 2.1.

algorithm \method hier part clum ordi

optimization A + +

heuristics + - - +
TABLE 2.1

The '+' indicates that the method in the corresponding cell is used
frequently. Thus, partioning and clumping methods are normally
solved by optimization algorithms; the partition of objects found
by hierarchical and ordination methods usually rely on heuristics.
The cells marked 'A' and 'B' refer to methods that are relatively
new and that are in a process of growth. The paper by De Soete et
al. (1984) is a major contribution in the development of hierarchi-
cal optimization methods.

This study is mainly concerned with the cell labeled 'B'. The
method to be proposed here can be seen as an ordination method that
is bounded by a cluster structure on objects.

It will be clear that the theory of partitioning methods can
provide useful insights in studying the central problem. We will
discuss partitioning methods and their associated problems in
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chapter four.
The next section is devoted to the first phase of clustering.

Similarities and spaces

This section deals with two basic forms of cluster
analysis input: similarities and spaces.

It is concluded that for our purposes spaces are
more useful than similarities.

Many classification methods require the data to be presented as a
set of proximities. Others implicily use a particular distance
measure (e.g. squared euclidian distances), and these require the
objects to be represented in some sort of (orthogonal) coordinate
system. We can thus distinguish two kinds of cluster input:
similarities and spaces. As said in the introduction of this
chapter, the conversion of raw data into a form that is suitable
for a particular technique is the first phase of clustering.

In this section we deal with matters concerning this first phase.

The majority of clustering techniques begin with the calculation of
a matrix of (dis)similarities or distances between objects. The
number of proposed methods regarding this calculation is large. For
example, CLUSTAN (Wishart, 1978), the most widely used cluster
package, offers a choice of 38 similarity measures.

And so, the main problem associated with proximities becomes
evident, namely the guestion which distance measure should be used.
Obviously the output of the clustering technique will only be as
meaningful as the input similarities are.

Because different similarity measures may have different values for
the same set of data, the problem of choosing an adequate
similarity coefficient is a serious one. Everitt (1980) shows for
the binary case, that some coefficients aren't even monotonically
related.

Leading texts on clusters analysis devote many pages to problems
regarding (particular) measures. Two of these difficulties will

be glanced at hereafter.

The first of these problems is related to the measurement level of
the input variables. Different coefficients for different measure-
ment levels have been proposed. The problem is, besides the
arbitrary choice of a particular measure, that coefficients for
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different measurement levels can not be easily compared. Thus, when
the columns of the original datamatrix consist of variables with
mixed measurement levels, similarities cannot be computed adeguate-
ly.

Gower (1971) developed a general similarity coefficient for the
mixed levels case. However, this measure makes no provisions for
ordinal variables.

A second problem regarding the use of similarities is the issue of
standardizing the input variables. Standardization is usually
undertaken to obtain compatible units of measurement. Typically,
one transforms each variable to Z-scores.

Cronbach & Gleser (1953) however pointed out that averaging and
standardizing variables eliminates the 'elevation' and 'scatter'
differences between object profiles. In general, 'elevation' and
'scatter' information is relevant. Therefore, they advice against
the use of standardization for most practical applications.

Thus, because most similarity coefficients involve some kind of

'averaging the variables', we run the risk of discarding valuable
information.

Some other problems with similarities are missing values, condi-
tionally present variables, and weiahting of variables. For these
issues, the reader is reffered to Gordon (1981).

Furthermore, when the number of objects is large, the computation
of a matrix of (dis)similarities becomes impracticable.

In the introduction of this section we stated that there are some
clustering methods that can operate without the need to calculate a
proximity-matrix. These methods usually rely upon the assumption
that objects can be adequatly represented in some sort of metric
space. Buclidian spaces with low dimensionality are preferred.

0f course, the problem now is to determine these spaces. At least,
we must deal with the above mentioned problems of measurement level
and standardization. We therefore resort to the optimal scaling
theory (Nishisato, 1980; Tenenhaus & Young, 1985).

The theory of optimal scaling enables us to raise the measurement
level of binary, nominal and ordinal variables to numerical level.
The process works by carrying out restricted transformations of
qualitative variables, such that the value of a loss function is
minimized.

The restrictions put on the transformations correspond to the
measurement levels of the variables. By selecting the appropriate
loss fuction we can generate a low dimensional euclidian space of
objects. In chapter three we describe the optimal scaling approach
in more detail.
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In comparing proximities and spaces we note that using spaces has
some advantages. For example, we can construct spaces of objects
that are optimal with respect to measurement level and scales of
variables. For proximities there is no way of achieving this.
Furthermore, spaces allow us to put restrictions on them. We can do
well out of this fact, because it enables us to treat the measure-
ment level and standardizing problems in a more formal way. This
will be done in chapter three.

Approaching the problem

This section discusses some approaches to solve
the central problem.

We can approach the central problem in a number of ways by using
some common methods. But before doing this, we discuss some crucial
elements of the problem.

In the central problem, there are three keypoints that ask for our
special attention. First, we want to find a fixed number of groups.
In the second place, these groups have to be internal cohesive,
external isolated and non-overlapping. Third, the input variables
are of nominal, ordinal or numeric type, or of any mix of these
types.

We consider these three keypoints as desiderata or as criteria by
which we can judge a clustering technique by its aptitude to solve
the central problem. Below, these desiderata and their implications
will be described in more detail.

The first desideratum is that the clustering technique must provide
us with a fixed, that is, specified in advance, number of classes.
Thus, the cluster method must be able to form this number of
classes. Most cluster methods manage to do this.

In many practical situations, the investigator may not have any
idea of how many clusters are present in the data. Many methods

to determine the number of cluster have been proposed. Milligan &
Cooper (1985) revised 30 methods and concluded that no completely
satisfactory solution is available.

The 'number of clusters' problem is beyond the scope of this study
and instead we assume that the number of clusters is known in
advance.
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The second desideratum 1s related to three propertles of the found
classes.

First, the classes should be mutually excluslve. Only hierarchical
and partitioning techniques yield non-overlapping clusters, so our
scope becomes limited to these two techniques.

The second property, internal cohesiveness of clusters, is much

more restrictive. One way to express internal cohesiveness in terms
of variances is to minimize the criterion trace(W). The matrix W is
the pooled-within group scatter matrix. This clustering criterion
was suggested by Edwards & Cavalli-Sforza (1965) and Singleton &
Kautz (1965).

Methods that attempt to minimize trace(W) are proposed by Forgey
(1965), Jancey (1966), Macqueen (1967) and Ball & Hall (1965).
These methods are all partitioning methods and they rely on
iterative optimization of the trace(W) criterion. The K-means
algorithm (Macgqueen, 1967; Hartigan, 1975) is one of the most
popular methods. Bayne et al. (1980) examined a number of selected
cluster procedure and found the K-means algorithm to be among the
best.

The third cluster-related property is external isolation. External
isolation means that we want the clusters to be as distinct as
possible from each other. Obviously, cluster separation is very
much affected by the spread of the input variables. Therefore, it
could be useful to construct new variables by determining linear
combinations of variables, that have maximum variance, and to use
these new variables as cluster analysis input. A method to

construct such new variables is Principal Components Analysis
(PCA).

The third desideratum of the clustering technique is its aptitude
to various and mixed measurement levels. As we pointed out in
section 2.2 we advocate the use of spaces instead of similarities.
Spaces enable us to build in non-metric generalizations into the
first phase of cluster analysis.

A common way of deriving spaces is to apply PCA to the data matrix.
Several generalizations of PCA have been made (Kruskal & Shepard,
1974; Tenenhaus, 1977; Young, Takane & De Leeuw, 1978; Gifi, 1981),
and the associate programs can handle mixed measurement levels.

In principle, any non-metric technique that creates low dimensional
euclidian spaces can be used. The advantage of using non-metric PCA
(NMPCA) is that it seems to serve two purposes. First, it is a
vehicle to get around with different measurement levels; second,
its property of maximizing variance suits the criterion of external
isolation.
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We are now able to review a few current methods to solve the cen-

tral problem. Table 2.2 summarizes some possible ways to handle the
problem.

METHOD intern extern measur fixed

cohesi isolat 1levels number
1 RD - prox ~ hierachical no no no yes
2 RD - prox - Kmeans vyes no no yes
3 RD - PCA - (prox) - Kmeans vyes yes no yes
4 RD - NMPCA - visual insp. no yes yes no
5 RD - NMPCA - Kmeans yes yes yes yes

TABLE 2.2

All methods in table 2.2 find non-overlapping groups. Hierachical
methods do not provide an optimal partition of objects at a given
level, so they are unsuitable for solving the problem of this
study. Methods 2 and 3 both suffer from measurement level problems.
In method 4 the problem is that visual inspection may not be able
to recover the preset number of groups; no structure is imposed on
the dataset.

Finally, method 5 seems an adequate way of handling the problem.
However, the scaling of variables in the NMPCA phase is only
optimal with respect to the loss function for the first p principal
components, and not with respect to the derived group allocations.
Thus, it is possible that a variable with much potential
discriminatory power could be scaled in such a way that most of
this power is lost. Clearly, losing discriminatory information is
not desirable.

We can overcome this problem if we minimize the value of a loss
function that both incorporates loss caused by maximizing variance
of the first p principal components, and loss caused by the group
allocations of objects. By minimizing such a loss function, we
simultaneously scale variables and cluster objects; and so the two-

stage procedure of cluster analysis collapses to one single phase.
The remainder of this study is concerned with the specification and

minimization of the above mentioned type of loss function. Chapter
three deals with the description of the loss function.
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CHAPTER THREE

THE THEORY OF GROUPALS

GROUPALS is built from two elements of the Gifi system, namely the
optimal scaling approach and the PRINCALS loss function. These will
be discussed in section 3.1.

Section 3.2 introduces the GROUPALS minimization problem. The
GROUPALS loss function is the same as the one used in PRINCALS, but
minimization is subject to different constraints.

In section 3.3 we deal with matters concerning the normalization of
the solution.

Optimal scaling and PRINCALS

This section discusses the Gifi approach to mixed
measurement levels and introduces the PRINCALS
loss function.

Most classical multivariate techniques are based upon the assump-
tion that the input variables are at least measured on a interval
scale. So, if we want to use these technigques (and we do) for the
nominal and ordinal measurement levels, we have to transform the
scale of the variables to interval level. Because there is an
infinite number of ways to ascribe numbers to categories, we need
some criterion to choose among all possibilities.

In the remainder, we will adopt the criterion of optimal scaling.

Gifi (1980,1981) describes a system of multivariate techniques for
categorical data. The central issue of the Gifi-system is the opti-

mal scaling of variables, such that a loss function is minimized.

Optimal scaling of a variable can be represented as a transforma-
tion problem:

tJ[hJ] = dy . (3-1)
Here, hy; is the j'th raw data vector, and q; is the vector of
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optimally scaled values (quantifications) for h;. The problem is to
find the transformation function t;.

It will be clear that t; is subject to some measurement constraints.

First of all, we want the objects that fall in the same category to
have the same scaled value. Thus t; has to satisfy

t;: (hu”hu) -> (q:.s:C_hJ), (3.2)

~

where indicates empirical equivalence (i.e., membership of the
same category), where hy, is the score and where q:; is the

quantification for object 1i.
In addition to (3.2) ordinal variables t, have to satisfy
t,: (hu(hu) -> (C_[uiq.u) . (3.3)

Constraint (3.3) preserves the order of the categories, but untied
objects may become tied.

Numerical (interval or ratio) variables require that the real num-
bers assigned to the observations must be functionally related to
that observations. For example, guantifications and raw observa-
tions could be related by some polynomial rule:

t_’: Jqiy = Z ﬁphg_’p (3.4)
p=0
If r=2 we have a quadratic relationship between the optimally
scaled and the raw observations.

In De Leeuw, Young & Takane (1976) a system of measurement and
process levels is discussed, which can be used to define many
different types of cones K; in a ky;-dimensional space, where k; is
the number of categories for variable j. Usually, ky; is much
smaller than the number of observations.

The cone K; sets up the feasible region in which all scaled values
g; must lie in order to satisfy the measurement constraints of
variable j. Let us define

ds; = Gsys , (3.5)
where y, is a k; vector of category quantification for variable j

and where G; is the indicator matrix of the raw data vector j (see
Gifi, 1980). So
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Ys € Ky (3.6)

can be used as a general formulation for all measurement con-
straints concerning variable j.

The values of the elements of y; can be found by means of optimal
scaling. The goal of optimal scaling is to find optimal transfor-
mations t; for each variable j by minimizing a loss function, while
satisfying (3.6) for all j's.

For our purposes the PRINCALS loss function is of interest. The
PRINCALS computerprogram is designed to find a specified number of
principal components from categorical data by means of an
alternating least squares algorithm. PRINCALS minimizes the
following loss function:

O(X;Y1,e0-,Y5,-0.,Y) = 1/m T tr(X-G,Y;) ' (X~-G,;Yy) (3.7)
=1

Minimization of ¢() takes place over the k;*p matrices Y, (the
multiple category guantifications) and the nxp matrix X (the obiject
scores), where k; is the number of categories of variable j, n is
the number of observations, and p is the dimensionality of the
problem. The nxk; matrices G; are indicator matrices, which repre-
sent the input data.
Note that we use Y, for multiple category quantifications (i.e.
quantifications in more than one dimension), whereas we reserve
lowercase y; for single quantifications.

The PRINCALS program minimizes (3.7) with normalizations X'X=I and
u'X=0, and with condition y;€K,;. The algorithm estimates Y;(37=1,m)
while holding X fixed, and vica versa, until some preset convergen-
ce criterion is reached.

The condition y, € Ky is satisfied by performing simple regression
(numerical), weighted monotone regression (ordinal) or centroid
scaling (nominal) for each variable seperately during the Y, esti-
mation phase.

The PRINCALS loss function and algorithm will be the starting point
of the next section. By defining a suitable extra restriction on
this loss function, we can create a procedure that finds clusters
of objects.
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3.2

GROUPALS

This section is concerned with the specification
of the GROUPALS loss function. The loss function
can be split up into two independent parts.

In (3.7) X represents a nXp matrix of objects scores. If p=2 we can
plot the object scores in a two-dimensional object space. Figure
3.1 is such a plot of a hypothetical sample of objects.
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w
— ! ~ !
FIGURE 3.1 FIGURE 3.2

The objects are scattered in a horse-shoe form. Suppose we are
interested to discriminate among three groups of objects, then fig.
3.2 would be more useful for our purposes; we can easily distin-
guish three groups of objects.

Unfortunately, many multivariate techniques do not provide with
such easy-to-interprete pictures like 3.2. Rather, we would get
something like 3.1, if we are lucky, or worse.

However, if we have an idea of the number of groups that are
present in the data, we can force the objects to cluster into that
number of groups. We achieve this by specifying an extra restric-
tion on the object space, namely the restriction that all objects
in the gsame group must lie on the same place (the cluster mean) in
the object space.

374



In other words, we require X to be a quantified categorical
variable (Heiser, 1986):

X = GY , (3.8)

where G. is a n*k. binary matrix of allocations (that is, an indi-
cator matrix of group memberships), where Y. is a ke¥p matrix of
locations (the cluster means) and where k. is the preset number of
groups. The . mnemonic stands for categorical. Both G. and Y. are
initially unknown.

The data-analytical problem now is to minimize loss function (3.7)
under the constraints (3.6) and (3.8). This problem will be refer-
red to as the GROUPALS minimization problem.

We will now pay attention to the mathematical elaboration of this
minimization problem.

If we define D. by
D. = G:G. (3.9)

then D. is a diagonal matrix, since we require the groups to be
mutually exclusive. The diagonal cells of D. are filled with the
total number of objects per group.

Furthermore, let X be defined as

X =1/m ¥ G,Y¥, (3.10)

J=1

then (3.7) can be reexpressed as

O(X;Y1, 00 ¥y, ¥) = 0(X;Y,0..,Y,...,Y) (3.11)
+ tr(X-X)'(X-X)

The matrices Y, (j=1,...,m) contain the category quantifications, X
is the matrix of centroids of ¥, (i=1,...,m) and X is the expanded
array of cluster means.

Notice that formula (3.11) allows us: to minimize its left hand side
by alternatingly minimizing the two components of its right hand
side.

The first component is nothing more than the PRINCALS loss function
(3.7). Its goal is to find optimal Y,...,Y¥,...,Y. for a given X.
The procedure to find these quantifications is described in Gifi
(1981) and will not be further discussed here.

By minimizing the second component we force each object to be as
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close as possible to its cluster mean. If we insert (3.8) the
remaining problem is to minimize

Oc(Ge; Y¥e) = tr(X-GcY.)'(X-G.Y.) . (3.12)

The major question now is to find the group allocation matrix G..
For any fixed G the cluster means can be found by

Y. = Di'G.X , (3.13)

i.e., the centroids (k.-dimensional means) of objects belonging to

the same group. It is convenient to reexpress (3.12) in the form
min T (Xi - Yea)'(Xu - Yigu) , (3.14)
g€ I (i=1,n) i=1

where X, is the i'th row of X, where g, is the i'th row of G., and
where the notation g,€ I indicates that g must be chosen from the
columns of the identity matrix. The solution of (3.14) can be
obtained by solving n distinct subproblems, in each of which we
have to allocate point 1 to the cluster with the closest centroid.

Surprisingly, alternating between (3.13) and (3.14) is the K-means
method applied to X. We have seen the K-means method before in
chapter two.

Thus we can use K-means to minimize the second part of the GROUPALS
loss function. In chapter four we discuss two implementations of
the K-means method.

The remainder of this chapter will be concerned with a rather
technical topic. Section 3.3 will deal with the normalization of
the solution. Normalization is undertaken to match minimization
procedures and to avoid trivial solutions.

Normalization

This section discusses some problems regarding the
normalization of the GROUPALS loss function. A
two-step procedure is proposed as a solution.

The value of the GROUPALS loss function is minimized over the
object scores X and over the quantifications Y;(j=1,...,m). In
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order to prevent the algorithm from making all X and Y, zero, X or
Y must be normalized.

The PRINCALS normalization convention is to require X'X=I. By
inserting constraint (3.8) this convention transforms into

Y.D.Y. = I , {3.15)

which complicates the efficient solution of (3.7). A problem arises
when we want to allocate an object to another group. We cannot
update the allocation matrix G. (and D.) without violating (3.15).

The alternative is to normalize the Y, (j=1,...,m) matrices.
This normalization requires the solution to satisfy

Y YDy, =T . (3.16)
=1
By using normalization (3.16) we can freely update the G. matrix.
However, if we wish to update the Y, matrices from X, we encounter
similar difficulties as by using (3.15).
The principle is that only the unnormalized part of the solution
can be updated.

Clearly, neither (3.15) nor (3.16) are suitable normalizations for
the GROUPALS problem.

A way out of this difficulty is to apply a temporary rescaling, as
is done in the canonical correlation method proposed by Van der
Burg and De Leeuw (1983).

The idea is to switch between the normalizations (3.15) and (3.16),
while preserving the loss between the X- and Y;- configurations.
The advantage of such a procedure is that we are able to estimate
both Y. and Y, (under different normalizations) within the same
procedure.

The problem now is to find transformation matrices such that the
loss is preserved.

Suppose (X;Y1,...,¥s,...,Ya) is any candidate solution with X'X = I
and the Yi,...,Y,...,Ys is unnormalized, then there exist matrices
A and B such that

0(X;¥1,«-e, ¥, ..., Ya) = G(XA;Y\B,...,Y,B,...,Y.B) (3.17)

and where Y, = Y,B (j3=1,...,m) satisfies
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1/m § YiDs¥, = I _ (3.18)
=1

The expression XA represents the unnormalized X, the Y, stands for
the corresponding normalized category guantifications.
The normalization procedure now involves the shifting between the
left and right hand of (3.17). We normalize the temporary solution
according to the left hand side (X normalized) if we want to
estimate the Y; matrices; we transfer the normalization to the
category guantifications if we want to update the object scores
(i.e. by assigning the cluster means to the object scores).

The tranformation matrices can be obtained by means of the
following procedure:

(a) for any set of unnormalized Yi,...,Y;,...,Y, £ind the
eigenvector/eigenvalue decomposition

KAK' = 1/m Y YiD,Y, ,
=1

(then we can identify A = KA and B = KA™).

(b) Use

X = 1/m } Gs¥y = 1/m § G,Y,KA™?

=1 B k¥

for the minimization (3.12) over X unnormalized.

(c) Suppose the clustering result is X' = GfY:
next compute the decomposition

.
’

LPL = (X)X

(d) Use
X = X'Lo?
for the minimization over Y:i,...,Ys,...,Y. unnormalized (but

satisfying the usual PRINCALS measurement restrictions).

(e) Compute stress and go back to (a) if its rate of change is
still larger than some predetermined stopvalue.

In the testing phase of this procedure, the following difficulty

was encountered. In case of single variables (single nominal or
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single ordinal) the minimization over Y,,...,Y,,. ..,Ys in step (4d)
sometimes increases the loss function value and this will corrupt
proper convergence.

To solve this difficulty, we have to consider that category
quantifications for single variables are subject to a rank-one
restriction. This restriction

Y, = ysbs , (3.19)
can be satisfied by minimizing

G(ys;by) = tr (y;by-Y3)'Dy(y,by-Y3) (3.20)
over Yy €K, and over b,. Y} is defined as

5 = D'GyX . (3.21)
For the PRINCALS algorithm the value of (3.20) is always lowered by
one inner iteration, during which y, and b; are estimated. This is
not the case for the GROUPALS algorithm, because of a possible
rotation of the complete solution in step (c).
One way to solve this is to allow more inner iterations to estimate
ys; and by. A more efficient method however is to adapt the b,-
vectors (j=1,...,m) to the current normalization.
Therefore, we extend the normalization procedure with two substeps.
To step (b) we add

by = byKA™ (for 3=1,...,m)
and to (d) we add

b3j* = bjLO® (for j=1,...,m)

We use bj* as the input component loadings for the minimization
over Y(,...,YJ,-..,Y:.

Now, the sequence of loss function values never increases, so
convergence is assured in the usual way.
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CHAPTER FOUR

IMPLEMENTATION AND TESTING

The theoretical discussion of the preceeding chapter provides the
basis of the GROUPALS computerprogram. In this chapter we account
for the implementation and testing of the program.

Section 4.1 summarizes the steps taken by the main algorithm; in
4.2 we focus on one of these steps, namely the clustering step.
Section 4.3 reports some results of testruns that were made in
order to study local minima.

The GROUPALS main algorithm

This section discusses the flow of the GROUPALS
main iteration loop.

A computerprogram to minimize the value of function (3.7) with the
appropriate measurement- and cluster- restrictions was developed
in standard ANSI FORTRAN IV. The appendix contains necessary infor-
mation on the operation of this program that is called GROUPALS.
This section describes the structure of the main iteration 1loop.

The following arrays have to be defined on entry of the main
iteration loop:

G. - initial cluster allocations

X - initial restricted object scores (normalized)
Gy - indicator matrices (j=1,...,m)

D; - marginal frequencies of G; (j=1,...,m)

If the measurement level over all variables is either multiple
nominal or numerical, then X is computed from a matrix of random
values between -1 and +1, using G. and a modified Gram-Schmidt
orthogonalization. In all other cases, G. and X result from an
initial cluster-restricted numerical SVD of the datamatrix.

The main algorithm can be subdivided into four parts, each of which
consists of several steps. These four parts include two estimation
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phases and two normalization phases.

Below the algorithm will be described. Each step is accompanied by
a clarification of its function. The subscript «-»n indicates that
values of the preceeding iteration are used.

The following steps are executed until the absolute difference of
the stress of two consecutive iterations is smaller than some

preset criterium value:

-—- Estimation:

(1) ¥; = D3'GjXce-1>

Step (2)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Y3 = Py(Yibjsee-1)

z; = y,(yiDsy )2

b = z,Y;

Y, = Z,’b:’

--- Normalization:

¥ YiDsY,

J=1

K EIGVEC(T)
Az = EIGVAL(T)

T

X = 1/m E GyY KA

=

ay = bJK}\—l

Quantifications over variables ---

Computation of the multiple category
guantifications from the restricted,
normalized object scores.

through (5) are executed for single variables only.

The yj;-vector is the projection of Y,b;
on the cone K,;. This projection is
realized through monotone or linear
regression for resp. the ordinal and
the numerical case.

Standardization of the single
datavector such that z'Dz=I.
Computation of the updated component
loadings b;.

Computation of the category
guantifications restricted by the
single vector approach.

transfer to category guantifications ---

Preparation step.

Eigenvalue decomposition of T provides
for K and A.

Computation of the expanded, unrestric-
ted object scores scaled such that

Y YiD,Y,=1I.

Rescale the component loadings.
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--- BEstimation: Cluster allocations =---

(10) G = KMEANS(X, Gew-n) Find the best partition given the new
object scores and the old partition.

(11) Y = (GeG:)'GX Extra computation of the updated cluster
means.

(12) X* = G.Y. Restrict the object scores to the
cluster means.

-—-- Normalization: Transfer to object scores ---
(13) T = (X')'x* Preparation step.
(14) L = EIGVEC(T) Eigenvalue decomposition of T provides
¢ = EIGVAL(T) for L and ¢o.

(15) X = X'Lo Rescale the restricted object scores
such that X'X=I.

(16) by = a;Lo Rescale the component loadings.

The above algorithm will serve as a reference point for our further
discussion of the program.

As we can see in step 10, the algorithm uses K-means inner
iterations to find the best partition of objects from the expanded,
unnormalized object scores. The next section is concerned with some
special characteristics of the K-means subproblem.
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4.2

K-means

This section introduces two versions of the K-means
and discusses some characteristics of these
algorithms.

In section 3.2 we pointed out that the K-means clustering method
can be used as a tool to minimize ¢.. This section discusses the
method in more detail and brings up some difficulties.

The K-means algorithm (Macqueen, 1967; Hartigan, 1975) is a
nonhierarchical clustering method that belongs to the family of
optimization techniques. The algorithm is designed to find that
partition of n objects into k groups, that minimizes the value of
an objective function. The K-means objective function is the sum of
squared distances between objects and the corresponding cluster
means (cf. formula (3.12) and (3.14)).

The K-means algorithm is based on the principle of jiterative
relocation. In its simplest form (which we call 'next-first'), the
algorithm consist of the following six steps:

K-MEANS (next first)

(a) Assume initial clusters 1,2,...,k.
Compute the cluster means.

(b) For each object, repeat steps (c) to (e)

(c) Compute the sguared euclidian distances between the
object and all cluster means.

(d) Allocate the object to the nearest cluster.

(e) Recompute the cluster means.

(f) If no movement of an object from one cluster to another
cluster occurs for any object, stop.
Otherwise, go to step (b).

Step (d) is the central (re)allocation step. Notice that updated
cluster means are used as the input for the next iteration. The
above algorithm thus converges towards a local minimum.

Hartigan (1975) suggests some variations on the above algorithm. A
particularly interesting modification is to determine that object
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that decreases the objective function most, prior to performing the
reallocation step. This 'best-first' algorithm consists of the
following steps:

K-MEANS (best first)

(a) Assume initial clusters 1,2,...,k.
Compute the cluster means.

(b) For each object, repeat steps (c) to (e)
(c) Compute the squared euclidian distances between the
object and all cluster means.
(d) Determine the reduction in total distance if the object is
reallocated to the nearest cluster.
(e) If this reduction is the largest sofar over all objects,
store the object identification.

(f) Reallocate the identified object to the nearest cluster.
(e) Recompute the cluster means.

(g) If no movement of an object from one cluster to another
cluster occurs for any object, stop.
Otherwise, go to step (b).

The best-first K-means algorithm reguires more computational effort
than the next-first version, because of the inclusion of the object
selection steps (c) to (e). On the other hand, the best-first
algorithm may be more effective in avoiding local minima. To test
this supposition, we have to compare both versions on a
considerable number of solutions, each of which has a different
starting allocation. We will do this in the section 4.3.

Below, we set out three properties of both algorithms and the
relation they have with GROUPALS.

First of all, the K-means algorithm will find a local optimal group
allocation, and not necessarily a global optimum. In principle, it
is possible to examine all possible partitions for the global
minimum value of the objective function. However, even for small
problems this would require enormous computational effort. Gower
(1967) estimated that a global optimal partitioning of 41 subjects
into 2 groups would require 540 years of time on the fastest
computer available at that time. In mathematical programming, the
allocation subproblem of GROUPALS is classified as a NP-hard
assignment problem, which does not possess a solution other than
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explicit enumeration.

Which local optimum will be found largely depends upon the chosen
starting allocation (Milligan, 1973). Different initial clusters
may lead to different solutions. Much controversy exists on how to
select the initial allocation. We will study the sensitivity of
GROUPALS to local minima in section 4.3.

A second characteristic of K-means is that it needs a specifica-
tion of k, the number of clusters. It will be clear that different
k's can cause quite different solutions.

If one has no clearcut idea of how many clusters are present in the
data (e.g. data-exploration), the problem is to choose a reasonable
value of k. Some partitioning methods (Ball & Hall, 1965; Macqueen,
1967) allow k to vary using splitting and merging strategies.
However, the problem then shifts to the specification of minimum
and maximum cluster sizes.

For the central problem, we treat k as fixed. To assess the vali-
dity of the found allocations, we adopt the SILHOUETTES graphic
method developed by Rousseeuw (1984). This method establishes a
visual representation of a given partitioning and can, amongst
others, be used to diagnose bad clusters.

The appendix contains a description of the operation and use of
SILHOUETTES.

Third, K-means implies assumptions about the shape of clusters.
The method always finds spherical clusters, even if natural
clusters in the data are of another (e.g. elliptical) form. The
shape preference of K-means is a major issue in determining the
form of the input data. )

In GROUPALS, the K-means clustering is applied to the unnor-
malized, expanded object scores X, which are computed in step 8 of
the main algorithm. In this step, the coordinates of the object
scores are multiplied by the square root of the eigenvalues A.
Postmultiplying A has the effect of magnifying each dimension pro-
portional to the square root of its eigenvalue.

Because K-means finds spherically shaped clusters, the contribution
of each dimension to the overall clustering solution is directly
related to its eigenvalue: the higher the eigenvalue, the more the
effect is on clustering.

Thus, for the central problem, the K-means shape preference can be
built in nicely into GROUPALS by relating eigenvalues and
clustering effect.

The next section is concerned with the difficulty of local minima
found by K-means.
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4.3

Starting allocations and local minima

In this section the next-first and best-first
algorithms are compared. It is concluded that no
method is superior to the other.

Furthermore, local minima are of fregquent occur-
rence. Additional study is necessary.

In section 4.2 we pointed out that the K-means algorithm does not
guarantee the found partition of objects to be globally optimal. In
this section we study the convergence properties of the two K-means
versions by computing a number of solutions with different starting
allocations. Furthermore, we estimate the deviation of the 1local
optimal partition from the global allocation.

As said in section 4.2, the starting cluster allocation determines
which local optimal partition will be found.

The initial allocation can be set up in a number of ways (see
Thorndike, 1953; Friedman & Rubin, 1967; Macqueen, 1%967; Hartigan,
1975). Some recent evidence (Scheibler & Schneider, 1985) indicates
that the K-means method performs significantly better if the
initial allocation was being constructed by a robust hierarchical
technique (e.g. Ward's method).

For our problem however, most of these initialization methods are
unsuitable because they assume that (dis)similarities between
objects are known in advance. In GROUPALS, the object scores and
the optimal partition are alternatingly estimated, and thus we do
not have similarities to our disposal at the initialization phase.
For GROUPALS we use one of the simplest approaches, due to Spath
(1980). Spath advices to compute the initial partition by

G.(i) = MOD(i,k) (i=1,...,n) ,

where G.(i) indicates the initial cluster allocation for object i,
where n is the number of objects and where k is the number of
clusters. To aviod local optimal solutions, Spath recommends to
repeat the analysis a number of times with a different ordering of
objects and to select the best partition.

Spath's allocation strategy provides for clusters which are initi-
ally nearly egqual in size. By randomizing the row-order of the
datamatrix we obtain distinct initial cluster estimates.
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Both next-first and best-first versions of K-means were being
implemented in GROUPALS. In order to study the appearance and
nature of local minima the program was applied to a testdataset
consisting of 118 objects and 7 variables, each of which contained
five categories.

Three conditions were varied: the number of clusters (3, 6 and 15),
the dimensionality (2 and 5) and the measurement level parameter
(multiple nominal and single ordinal).

Table 4.1 summarizes the results of 100 testruns for some combina-
tions of these conditions. Each testrun was given a pseudo-random
permutation of the datamatrix rows.

All fit-values that differ in the fourth digit after the decimal
point refer to distinct solutions (i.e. different partitions). If
fits differ less than 0.0001, the partitions found by the program
are, in general, identical.

6 x 100 testruns -- NEXT FIRST method
di cl 1lev time mean mean st min max max
/sol. iter fit dev freq
2 3 NOM 0.09 6.23 1.054 .158 0.697 1.366 12
2 15 NOM 0.32 11.43 1.502 .037 1.149 1.530 1
5 NOM 0.26 6.00 2.022 .094 1.452 2.109 1
2 3 ORD 0.13 5.62 0.764 .004 0.741 0.767 38
2 15 ORD 0.48 16.75 0.846 .002 0.842 0.850 1
5 6 ORD 0.71 14.20 0.893 .019 0.845 0.931 1
TABLE 4.1la
6 ¥ 100 testruns -- BEST FIRST method
di cl 1lev time mean mean st min max max
/sol. iter fit dev freq
2 3 NOM 0.21 6.59 1.137 .200 0.574 1.366 19
2 15 NOM 1.51 11.43 1.511 .013 1.495 1.528 1
5 6 NOM 0.76 5.85 2.019 .113 1.419 2.126
2 ORD 0.24 5.16 0.764 .004 0.756 0.767 36
2 15 ORD 1.50 18.20 0.848 .002 0.840 0.854 1
5 6 ORD 1.42 17.00 0.897 .016 0.856 0.931 1
TABLE 4.1b
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These tables show that the next-first and best-first methods are
roughly comparable for the mean, standard deviation, minimum and
maximum of the found fits. There seems to be a slight trend in the
mean values in favor of the best-first algorithm; however, this
trend is not strong enough to make up for the difference in
execution time,

The last column of the tables lists the number of times the maximum
fit (over 100 runs) was found.

It is striking that only for a low number of clusters (in our case
3), the maximum, perhaps globally optimal, value was found more
than once. This is can be partly explained by the fact that the
number of possible partitions dramaticly increases with the number
of clusters, which makes it harder to single out the optimal
partition.

Furthermore, as the standard deviation indicates, more distinct
local minima are found in the case of nominal variables. One of the
analysis (Next first, 5 dimensions, 6 clusters, nominal) showed a
number of 96 (out of 100) different local minima.

From a mathematical point of view one could say that, due to the
NP-hardness of the allocation problem, both clustering methods are
inadequate to minimize the value of the GROUPALS loss function,
and, that the solutions are seriously troubled by the presence of
local minima, especially if the number of clusters is large and the
variables are nominal.

In practice however, one could argue that the majority of sub-
optimal solutions would be quite acceptable if the found partitions
are nearly similar to the optimal partition (i.e. only differ in a
small number of allocations).

Table 4.2 lists the fitvalues that were found in the analysis that
yvielded the smallest amount of local minima (118 objects, 2 dimen-
sions, 3 clusters and ordinal level). If we assume that the highest
fit value (.7672) represents the global optimum, we are able to
compute the number of 'misclassifications' for each local minimum.
Table 4.2 also provides the frequency each minimum was found by
both clustering methods.

Table 4.2 indicates that there is no monotone relationship between
the value of the fit and the number of misclassifications. Fortu-
nately however, 'severe minima' (i.e. minima that have a large
number of misclassifications) are found less often than 'acceptable
minima'.
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fit mis nf-fr. bf-fr.

7672 0 38 36

.7648 3 39 39

.7622 28 5 4

.7568 16 17 21

.7414 20 1 0
TABLE 4.2

Most of the misclassified objects lie in between clusters. Except
for a slight shift of cluster centres;,; the overall configuration of
different solutions look very similar.

The averade number of misclassifications was found to be about 5%
of the number of objects.

It is gquestionable if the same results would be obtained for other
numbers of clusters and dimensions, measurement levels and data.
Further study is needed to generalize these results.

For the time being, we advice to make some provisions in order to
avoid the most severe minima. Therefor, we can follow one of two
ways: the 'brute force' approach and the 'guided' approach.

By using the 'brute force' approach we simply generate a large
number of solutions, each with a different initial allocation, and
subsequently pick out the best. GROUPALS has a built in TESTMODE
for rapidly generating a large number of solutions.

The 'guided' approach makes use of the notion that deviations from
the optimal partition are usually caused by objects that do not
tend to cluster very well. These objects can be easily isolated by
inspecting the SILHOUETTES. By using the reading and writing
options of GROUPALS, we can set the allocations of all objects that
have a SILHOUETTE-width lower than a certain value (say .50) to an
unknown cluster value (=0) and rerun the program with this partly
known initial allocation.

In general, it is useful to provide as much information as possible
to set up the starting partition.

We conclude that both K-means versions are sensitive to the
initial partition and are likely to produce local optimal solu-
tions. The best-first method does not prove to avoid local minima
more effectively, and hence we choose the next-first method as the
default clustering algorithm, primarily because it is faster.

We need further study on local minima. For the present, we have to
reckon with the possibility that the found partition could depart
significantly from the optimal one.
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CHAPTER FIVE

EXAMPLES

Iris data

In this section the Iris data are used to compare
GROUPALS to CLUSTAN and HOMALS.

The Iris data (Fisher, 1936) have become a favorite example for
illustrating clustering procedures (Duda & Hart, 1973). In this

section we use the Iris data to compare GROUPALS to CLUSTAN and
HOMALS.

The Iris dataset consists of measurements of 150 irises, which.can
be grouped into 3 species: setosa, versicolor and virginica. The
obtained measurements are sepal length, sepal width, petal length
and petal width. Table 5.1 contains the observed means for each
species of flowers.

sepal sepal petal petal

length width length width

setosa 5.006 3.428 1.462 0.246

versicolor 5.936 2.770 4.260 1.326

virginica 6.588 2.974 5.552 2.026
TABLE 5.1

In general, the setosa irises can be easily distincted from the
other two species; the difficulty is to discriminate between
versicolor and virginica.

GROUPALS and the CLUSTAN RELOCATE procedure (Wishart, 1978) were
applied to the Iris data. The goal was to partition the 150 flowers
into three groups. The CLUSTAN input dissimilarities were obtained
by computing euclidian distances from the first two principal
components of the datamatrix. For GROUPALS, the measurement level
of all input variables was conceived to be numerical.

Figure 5.1 shows the configuration of objects found by GROUPALS for
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two dimensions and three groups. Each object is labeled by its
cluster number. '
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The fit of

the solution is 0.7669. Cluster 1 appears to be sepa-

rated very well from clusters 2 and 3. It contains all setosa

irises and

none of the other species. For clusters 2 and 3

discrimination is less powerful.

If we compare the partitions found by GROUPALS and CLUSTAN to the
botanical typology, it becomes evident that both methods do not
exactly repfoduce the biological classification. Table 5.2 is a
crossclassification of botanical type by both obtained partitions.

CLUSTAN CLUSTERS GROUPALS CLUSTERS
TYPE 1 2 3 1 2 3
setosa 50 - - 50 50 - - 50
versicolor - 39 11 ] 50 - 38 12 50
virginica - 14 36 50 - 14 36 50
50 53 47 50 52 48
- TARLE 5.2 -

Both clustering procedures classify approximately 5 out of 6
objects corresponding to the botanical type of the object. All
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setosa irises are succesfully isolated; clusters 2 and 3 contain a
number of obJjects that are allocated to the 'wrong' cluster. This
result indicates that additional discriminating information is
needed to identify the versicolor and virginica flowers more
completely.

Note that the partitions found by GROUPALS and CLUSTAN RELOCATE are
nearly identical. Only one (!) object was classified otherwise.
From this example we conclude that CLUSTAN RELOCATE and numerical
GROUPALS are likely to yield partitions that bear great a
resemblance.

GROUPALS provides the possibility to cluster on non-numerical
variables. We will now analyse the Iris data analogous to the above
analysis, except that the variables are defined as multiple
nominal. We compare the result to the configuration found by
HOMALS.

One could question whether it is correct for this dataset to
replace the single numerical by a multiple restriction. We justify
the use of multiple guantifications by the following line of
thought.

By using single restrictions, the quantification for a variable

is, up to a scale factor, identical for all dimensions. Multiple
quantifications on the other hand, are computed for each dimension
seperately. Now, if one group clearly differs from all other groups
in the analysis (as in our example the setosa irises), single
variable quantifications will highly reflect this difference.
Because the same quantifications are being used for all dimensions,
the whole solution becomes dominated by the presence of one unique
group, which causes the differences among other groups to become
overshadowed. If we use multiple quantifications, the first
dimension of the solution almost surely discriminates the unique
group from the other groups; however, the higher dimensions are
left free to discriminate among the others.

HOMALS and GROUPALS were applied to the Iris data. Each variable
was recoded into seven, approximately equally filled, categories.
Local minima were avoided by selecting the GROUPALS solution with
the highest fit over 50 runs, each of which that started with
random allocation.

The fits of the solutions are 1.44 for HOMALS and 1.27 for
GROUPALS. The difference of the fits (0.17) can be attributed to
the extra restriction placed on the object space. The configu-
rations of objects, each labeled by its botanical classification,
are shown in the figures 5.2 and 5.3.
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Both figures show the same trend: group 1 differs from the other
groups in the horizontal direction and group 2 is distinct from
group 3 mainly in the vertical direction. The difference however is
that the groups found by GROUPALS are more pronounced: the loss of
fit has been traded in for a much clearer picture.

Furthermore, the partition found by the GROUPALS with nominal
variables is substantially closer to the botanical classification

than the partition for numerical variables. Table 5.3 illustrates
this fact.

GROUPALS CLUSTERS

TYPE 1l 2 3

setosa 50 - - 50
versicolor - 49 1 50
virginica - 9 41 50

50 58 42
TABLE 5.3

The variables of the dataset are measured on an interval scale. In
the above analysis we assumed, for the reasons named, the variables
to be nominal. By inspecting the variable gquantifications we can
assess the violations of a numerical assumption and we can
determine if there is any systematic trend in these violations.

In figures 5.4 and 5.5 the original categories of the variable
petal width are plotted against the quantifications.
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For the first dimension the category quantifications are a monotone
increasing function of the category numbers. Note that there is a
sharp distinction between the low and the high category numbers.
This distinction is parallel to the difference between the setosa
and the other species of irises. Furthermore, the guantifications
for the higher categories (from 3 on) are nearly similar, so these
quantifications do not yield big differences between the other
species. )

Another situation occurs for the second dimension. Here the main
distinction falls in the region of the higher categories. These
categories correspond to the versicolor and virginica species. Thus
the species that are similar on the first dimension are discrimi-
nated on the second. .

The variable is clearly not scaled numerically. However, if we

do not take in account the setosa quantifications for the second
dimension, a multiple ordinal assumption holds.

Whales data

In this example the Whales data are used to demon-
strate a number of GROUPALS features.

Vescia (1985) lists a dataset of 36 different types of whales. Each
type of whale is described by 15 parameters regarding morphology,
osteology and behaviour. Most parameters were picked from the
GRASSE's zoological treatise (Grasse, 1955).

In this section, we compare the partition obtained by GROUPALS to
the partition proposed by Grasse. Furthermore, a feature not seen
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in other cluster programs is highlighted. This feature concerns the
direct access to the discriminatory power of the input variales.

The 15 variables of the whales dataset are:

V1 NECK present or not

v2 FORM OF HEAD cylindric, conical, flat, convex etc.
v3 SIZE OF HEAD medium or big

V4 BEAK no beak, large, narrow, long

V5 DORSAL FIN no fin, triangular, falciform, backward
Ve FLIPPERS small, long, medium, large, narrow

v7 TEETH no teeth, on upper/lower jaw

Vs FEEDING squish, fish, seal, plankton

Vo BLOW HOLE left, right, middle, two holes

V10 COLOR blackish, spotted, no pigment, light ventral
V11 VERTEBRAE free or welded

V12 JUGAL BONES one piece or independent

V13 HABITAT rivers, warms seas, cold seas, coasts
V14 FURROWS no furrows, small number, large number
V15 HEAD BONES

symmetrical, unsym., very unsymmetrical

Grasse classifies the 36 types of whales into nine families or
species. These species can be grouped hierarchically to form other

partitions, as follows:

Classification given by P. Grasse

BALEEN WHALES:
1 BALEEN WHALES: BALAENIDAE

2 GREY WHALE: ESCHRICHTIIDAE 1
3 FINBACK WHALES: BALAENOPTERIDAE 3
TOOTHED WHALES:
PLATANISTOIDEA
4 RIVER DOLPHINS: PLATANISTIDAE 4
DELPHINOIDEA
5 DOLPHINS: DELPHINIDAE 14
6 PORPOISE: PHOCAENIDAE 2
7 WHITE WHALES: DELPHINAPTERIDAE 2
PHYSETEROIDEA
8 SPERM WHALES: PHYSETERIDAE 2
9 BEAKED WHALES: ZIPHIIDAE 5
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Two GROUPALS analysis, both based on nine clusters, were made.

In the first analysis, the above classification was read as the
initial cluster allocation and was held fixed during the analysis
by means of the METH parameter (see the appendix). This kind of
analysis is called the discriminant approach of GROUPALS: the G.
matrix of cluster allocations is treated as fixed. The result is
that the variables are optimally scaled with respect to the given
partition. Note that because of the difference in loss functions,
the discriminant approach of GROUPALS is not identical to the
discriminant option of CANALS.

In the second GROUPALS analysis we employed the K-means sums of
squares clustering to obtain nine clusters, starting from a random
starting allocation.

Both analyses used a problem-dimensionality of eight: the number of
clusters minus one. Although it is possible to specify a lower
number of dimensions, we advice to set the dimensionality to the
number of clusters minus one. In this case, the number of groups
fits exactly in the available space and maximum use is made of the
discriminating information of the input variables.

Except for variables 14 and 15, which are single ordinal, all
variables are considered to be multiple nominal.

The fits of the analyses are 1.70 (Grasse) and 1.78 (GROUPALS). It
can thus be concluded that the classification of Grasse is not the
best partition into nine groups.

The principal differences between the cluster allocations of the
two solution can easily be detected by inspecting the SILHOUETTE
plots given by GROUPALS. It appears that the allocations for the
clusters 1,2,3,4,8 and 9 are exactly identical; differences are
seen only for clusters 5,6 and 7 (the DELPHINOIDEA whales).
Figures 5.6 and 5.7 are the SILHOUETTES for these clusters.

From figures 5.6 and 5.7 we can infer that a number of dolphins
moves from cluster 5 to the PORPOISES and WHITE WHALES clusters.
Apparently, the original cluster of dolphins is not tight enough to
hold its members. On the other hand, the PORPOISES and WHITE WHALES
do not seem distinct enough from the dolphins; and so, these
species become mixed up with some of the dolphins.

The SILHOUETTE profiles can be used to assess the validity of
clusters and to identify objects that do not cluster very well. In
our example, the object no. 11 (GRAMPUS dolphin) is the least
'clusterable' object in both solutions.
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