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Introduction

In this paper we shall discuss the method of path analysis, with a number of
extensions that have been proposed in recent years. The first part discusses path
analysis in general, because the method is not very familiar to ecologists. We
combine classical path analysis models, first proposed by Wright (1921, 1934),
with the notion of latent variables, due to psychometricians such as Spearman
(1904) and to econometricians such as Frisch (1934). This produces a very general
class of models. If we combine these models with the notion of least squares
optimal scaling (or quantification, or transformation), explained in De Leeuw
(1986), we obtain a very general class of techniques.

Now in many disciplines, for example in sociology, these path analysis
techniques are often discussed under the name causal analysis. It is suggested,
thereby, that such techniques are able to discover causal relationships that exist
between the variables in the study. This is a rather unfortunate state of affairs (De
Leeuw, 1985). In order to discuss it more properly, we must start the paper with
some elementary methodological discussion.

One of the major purposes of data analysis, in any of the sciences, is to
arrive at a convenient description of the data in the study. By 'convenient' we mean
that the data are described parsimoneously, in terms of a relatively small number of
parameters. If possible this description should be linked as tightly as possible to
existing scientific theory, and consequently the parameters should not be merely
descriptive, but they must preferably be part of a model for the phenomenon that is
studied. This makes it possible to communicate efficiently, and to fit the results into
an existing body of theory. Fitting data into existing theory, or creating new theory
to incorporate the data, is called explanation. If the theory is formulated in terms of
if-then relationships, or more generally in terms in functional relationships, then we
can call this explanation causal .

Thus causality is interpreted by us as a way of formulating theories, a way
of speaking about the world. Whether everything, or almost everything, moves or
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develops deterministically according to causal laws is, from a scientific point of
view, not an interesting question. It is an undeniable fact that everybody, including
scientists, uses causal language all the time. It is also true, that in most contexts the
word causality suggests a necessary connection, a notion of the cause producing
the effect, and the idea that it must be possible to change the effect by manipulating
the cause. This does not imply, as we sometimes hear, that causal connections can
only be established by experimental methods. Causal connections, if they are
necessary connections, cannot be established at all, in the same way as natural laws
cannot be proven inductively. Causality is a figure of speech, and there is no need to
'establish' a figure of speech.

This does not mean, of course, that persons engaged in scientific discourse
can afford to choose their terminology in a misleading and careless way. The word
'causality' has all the connotations we have mentioned above (necessity,
productivity, manipulation), and if social scientists, for instance, want to use the
word, they must realize that it has these connotations. If social scientists set out to
prove that 'social economic status' causes 'school achievement', and 'school
achievement' causes 'income’, then they will have a hard time convincing others that
they are using the word ‘cause’ in the same sense as somebody who says that
putting a kettle of water on the fire causes it to boil.

We briefly mention some other points that are important in this connection.
There has been a justifiable tendency in statistical methodology either to avoid the
word 'cause’ altogether, or to give it a precise meaning which does not necessarily
have much to do any more with the common sense notion. Simon (1953) and Wold
(1954), for instance, define 'causality’ as a property of systems of linear
regressions, some are causal and some are not. This is not very objectionable,
although of course not without its dangers. A very important point of view,
defended for example by Pearson (1911), is that causation is merely the limiting case
of perfect correlation. This resulted from a conscious attempt, started by the Belgian
astronomer Quetelet, to bring the laws of the social and life sciences on an equal
footing with the laws of the physical sciences. Pearson eloquently argued that
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correlation is the more fundamental scientific category, because causality is merely a
degenerate special case, which does not really occur in practice. Again this point of
view is not inherently wrong, provided we broaden the definition of correlation
sufficiently.

This is related to the fact that lawlike relationships in the social sciences and
the life sciences are usually described as probabilistic in stead of deterministic. If
we have ten kettles, and we put them on the fire, then the water will boil in six or
seven of them. But this difference is mainly a question of choosing the appropriate
unit. A probabilistic relationship between individual units is a deterministic
relationship, in fact a functional relationship, between the random variables defined
on these units. A linear regression between status and income is a deterministic
relationship between averages, even though it does not make it possible to predict
each individual income precisely from a known status-value. If we call a law-like
relationship between the parameters of multivariate probability distributions a
correlation, then Pearson's point of view about causality makes sense. Of course we
must again be careful, because another far more specific meaning of the word
‘correlation’, also connected with the name of Pearson, is around too. Compare
Tukey (1954) for more discussion on this point.

Up to now we have concentrated on data analysis as a method of
description. We summarize our data, preferably in the context of a known or
conjectured model which incorporates the prior information we have. At the same
time we also investigate if the model we use describes the data sufficiently well. But
science does not only consist of descriptions, we also need to make predictions. It is
not enough to describe the data at hand, we must also make statements about similar
or related data sets, or about the behaviour of the system we study in the future. In
fact it is perfectly possible that we have a model which provides us with a very good
description, for example because it has many parameters, but which is useless for
prediction. If there are too many parameters they cannot be estimated in a stable
way, and we have to extrapolate on a very uncertain basis. Or, to put it differently,
we must try to separate the stable components of the situation, which can be used for
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prediction, from the unstable disturbances which are typical for the specific data set
we happen to have.

We end this brief methodological discussion with a short summary. The
words 'correlation' and ‘causality' have been used rather loosely by statisticians,
certainly in the past. Causal terminology has been used by social scientists as a
means of making their results sound more impressive than they really are, and this is
seriously misleading. It is impossible, by any form of scientific reasoning or
activity, to prove that a causal connection exists, if we interpret ‘causal’ as
'necessary’. What we are really looking for is invariant functional relationships
between variables, or between the parameters of multivariate probability
distributions. These invariant relations can be used for prediction.

Path models in general

We shall now define formally what we mean by a path model. In the first
place such a model has a qualitative component, presented mathematically by a graph
or arrow diagram. In such a graph the variables in our study are the corners, the
relationships between these variables are the edges. In the path diagrams the

variables are drawn as boxes, if there is an arrow from variable V, to variable V,

then we say that V,is a direct cause of V, (and V, is a direct effect of V).

Compare Diagram 1, for example. Observe that we use causal terminology without
hesitation, but we follow the Simon-Wold example and give a precise definition of

causes and effects in terms of graph theory. If there is a path from a variable V, to
another variable V,, then we say that V, is a cause of V, (and V, is an effect of

V,). In Diagram 1, for instance, V, is a cause of V and V., although not a direct

cause.
An important class of graphs is transitive, by which we mean that no path
starting in a corner ever returns to that corner. Diagram 1 is transitive, we also say
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\' \'
1 6
\' A"
2 7
Diagram 1:
path diagram
direct
level causes causes predecessors
Varl 0 % 3 % % % 3% 3 % % 3 % %
Var 2 0 3 % 3% 3% 2 3 % % 36 3% % %
Var 3 1 {1,2} {1,2} {1,2}
Var 4 1 {1} {1} {1,2}
Var 5 1 {2} {2} {1,2}
Var 6 2 (1,4} {4} {1,2,3,4,5}
Var7 2 {1,4} {4} {1,2,3,4,5}
Table 1:

causal relations in Diagram 1
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that the corresponding path model is recursive. Diagram 1 would not be recursive

any more with an arrow from V, to V,, because of the path V, =V, = V,=V,,

but it would still be recursive with an arrow from V,, to V,. There have been heated
discussions about the question whether or not non-recursive models can still be
called causal. With our definition of causality they obviously can.

In recursive models we can define an interesting level-assignment to the
variables. This concept is due to De Leeuw (1984). Variables at which no arrows
arrive are often called exogeneous variables. They get level 0. The level of an
endogeneous (i.e. not exogeneous) variable is one larger than the maximum level of

its direct causes. We call V, a predecessor of V, (and V, a successor of V,) if the

level of V,is less than that of V,,. In the Table 1 we give causes, direct causes, and

predecessors for the variables in Diagram 1. Clearly the direct causes are a subset of
the causes, and the causes are a subset of the predecessors. If x is any variable, we

write this symbolically as pred(x) o cause(x) o dcause(x). By using lev(x) for
the level, we can now say dcause(x) = @ = lev(x) =0, and lev(x) = 1 + max
{lev(y) | y € dcause(x)}. A model is recursive if (Vx){x ¢ cause(x)}. These
qualitative concepts make it possible to explain what the general idea of path analysis
is. We have defined our notion of causality in terms of the path diagram. Other
notions which are important in path analysis will be discussed below.

Recursive path models

We know make the path diagram quantitative, by embedding the qualitative
notions in a numerical model for the variables. We restrict ourselves to linear
structural models. This may sound a bit confusing, given the title of the paper, but
linearity refers here to the relations between the variables. There exist nonlinear path
analysis techniques, developed in the framework of log-linear analysis (Goodman,
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1978, Kiiveri and Speed, 1982), but these are outside our scope. They are discussed
and compared with our approach in De Leeuw (1984). The only nonlinearity we
allow for, at a later stage, is that connected with the transformation or quantification
of variables. We assume, for the moment, that all variables are completely known,
and, moreover, standardized to zero mean and unit variance. Thus VAR(x) = 1 for
all variables x, and AVE(x) = 0. We also introduce the symbols COV(x,y) and
COR(x,y) for the covariance and correlation between two variables x and y.

The model in Diagram 1 can be made numerical in the following way. We
take all the endogeneous variables in turn, and we suppose that they are a linear
function of their direct causes, plus a disturbance term. The linear model
corresponding with Diagram 1 becomes

X3 =Byixy + ByXy + e, (1a)
Xy = ByyXq + &y (1b)
X5 = Bs,X, + &5, (1c)
Xg = BegXy + €6 (1d)
X7 = Bra¥y + &5 (le)

The assumptions we make about the disturbance terms g;are critical. These
assumptions are in terms of uncorrelatedness, for which we use the symbol 1. First

assume for each j that the €; are uncorrelated with dcause(xj). Thus

gL (X%}, (2a)
gL {x;}, (2b)
es L {x,}, (20)
gg L (x4}, (2d)
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gl {x4}. (2e)

Now model (1)(2) describes any data set of seven variables perfectly. To see this it

suffices to project each X; on the space spanned by its direct causes, i.e. to perform
a multiple regression with X; as the dependent variable and dcause(xj) as the

independent ones, and to take g equal to the residual. Then the disturbance is, per

definition, uncorrelated with the direct causes in the same equation, and description
is perfect. We can also say that the model is saturated, or just identified. It does not
impose any restrictions, it merely provides us with an alternative description which
is perhaps preferable to the original one because it links the data with some existing
theory. But although description is, in a trivial sense, perfect, the performance of
(1)(2) as a predictive model may still be very bad. The predictive power of the model
is measured by the variances of the disturbances or residuals. If this is large, then
we do not predict the corresponding variable efficiently. Thus we can have models
which are good descriptors but poor predictors.

Path models can also be poor descriptors. But in that case we clearly must
make stronger assumptions about the distribution of the disturbances. Let us call for

any path model the assumption that for each j we have gL dcause(xj) the weak

orthogonality assumptions . The strong orthogonality assumptions are defined for
recursive models only. They are (i) that the disturbances are uncorrelated with the
exogeneous variables, and (ii) that disturbances of variables of different levels are

uncorrelated with each other. In symbols this reads g4 {x llev(x) =0} and gL {ey

llev(x,) # lev(xj) }.Thus, in a convenient compact notation, in our Diagram 1,

{e38485.8687) L {X:X,}), (3a)
{eg.e4085} L {g6:87]). (3b)
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Assumption (3) is much stronger than (2), and not all sets of seven variables satisfy

(1) and (3). Because ¢, L {x,,x,}, for example, regression of x, on x; and x, will
give B,, =01if (1)(3) is true, and this is clearly restrictive. Thus model (1)(3) can be

a poor descriptor as well as a poor predictor. It is clear, by the way, that a model
which is a good predictor is automatically a good descriptor.
For the causal interpretation the following argument is useful. It extends to

all recursive models. We have e, L {x;,x,} and g, L &;. Thus, from (1a), 5L x5. In
the same way €¢ L x, and g4 L Xs5. Thus g¢ L {X{,X5,X3,X4,X5}, which implies that

Proj(x¢lx,,x,,X3,X4,X5} = proj(xglx,), with proj(ylx,,...,x ) denoting least
squares projection of y on the space spanned by x,...,X,. In words this says that

the projection of x, on the space spanned by its predecessors is the projection of x,

on the space spanned by its direct causes. The interpretation is that, given the direct
causes, a variable is independent of its other predecessors. Thus the strong
orthogonality assumptions in recursive models imply a (weak) form of conditional
independence .

We shall now treat some more or less familiar models in which description
is perfect. These models are consequently saturated. The structural equations
defining the model can be solved uniquely, and the model describes the data
exactly. The first, and perhaps simplest, example is the multiple regression model.
An example is given in Diagram 2. If we compare this with Diagram 1 we see some
differences which are due to the fact that we have made the model quantitative. In the
first place the arrows now have values, the regression coefficients. In the second
place it is convenient to use curved loops indicating the correlations between the
exogeneous variables. The curved loops can also be used to represent correlated

disturbances. This becomes more clear perhaps if we add dummy equations like x; =

g for each of the exogeneous variables, which is consistent with the idea that

exogeneous variables have no causes. Exogeneous variables are, in this sense,
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11

13 X

Diagram 2:
X3 multiple regression model

XIMX2MX3 Diagram 3:

J a simple
saturated recursive model

B31
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identical with disturbances. The strong orthogonality assumptions on disturbances

can now be stated more briefly, because they reduce to the single statement € L{gl

lev(x,) # lev(xj) }. Arrows are also drawn in Diagram 2 to represent uncorrelated

disturbance terms.

In Diagram 2 , and in multiple regression in general, there is only one
endogeneous variable, often called the dependent variable. There are several
exogeneous variables, often called predictors or independent variables. The linear
structural model is

y=BX; +... B X, te )

The orthogonality assumptions on the disturbances are ¢ | dcause(y) = {x;,....x }.

In this case the strong assumptions are identical with the weak assumptions, because
dcause(y) are exactly the exogeneous variables. Thus (4) is a saturated model. If
we project the dependent variable on the space spanned by the predictors, then the
residual is automatically uncorrelated with each of the predictors. The description is
perfect, although the prediction may be lousy. We measure quality of prediction by
the multiple correlation coefficient R2=1- VAR(g), in this context also known as
the coefficient of determination .
Diagram 3 shows a somewhat less familiar model. Its linear structure is

Xy = BarX; + &, (5a)

X3 = B3 x| + B3pX, + &5 (5b)

The weak orthogonality assumptions, which make (5) a saturated model, are gL

{x,} and &; L {x,x,}. It follows from this that ¢, is the residual after projection of

X, on X,;. Thus B,, = COR(X,,X,), and &, = X, - B,;X, is a linear combination of x,
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and x,. This implies that e; L e,, and consequently the strong orthogonality

assumptions are true as well. Although we did not require it, we automatically get
uncorrelatedness of the disturbance terms.

If we try to generalize the structure in Diagrams 2 and 3 we find something
like Diagram 4. Variables are partitioned into sets, and variables in the same set have
the same level. In sarurated block-recursive models dcause(x) = pred(x) for all
variables x. Thus there are arrows from each variables to all variables of a higher
level. There are no arrows within sets. The arrows indicating errors in Diagram 4
actually indicated correlated errors. Saturated simple recursive models (also called
causal chains ) have only one variable in each set, and thus all variables have a
different level. For both block recursive models and simple recursive models the
weak orthogonality assumptions , together with the structure, imply the strong
orthogonality assumptions. And, consequently, imposing the strong orthogonality
assumptions leaves the model saturated and the description perfect. Residuals of
variables of different levels are uncorrelated, and residuals are uncorrelated with
variables of a lower level. There can be correlation between the residuals of variables
of the same level, or between residuals and variables of a higher level. We can find
path coefficients by regressing each endogeneous variable on the set of its
predecessors.

We have seen that recursive models are path models corresponding with
transitive graphs, having no 'causal loops'. Saturated recursive models, of which
the block recursive models and simple recursive models are special cases, describe
the dispersion matrix of the variables precisely. Non-saturated or restrictive
recursive models, of which the model in Diagram 1 is a special case, arise from
saturated models by leaving out certain arrows. It is still the case that an
unambiguous level assignment is possible, and the terminology of predecessors and
successors still applies.

In quantifying any path model we can simply use the path diagram to write
down the linear structural equations. We also have to assume something about the

disturbances in terms of their correlation with each other and with the X;. The weak
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6 residuals 4 residuals
level 0 level 1 level 2
18 arrows 24 arrows

—— | —

12 arrows

Diagram 4:

general recursive saturated model
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orthogonality assumptions can be applied in all cases. They make the model
saturated, and have as a consequence that consistent estimation of the regression
coefficients is possible by projecting a variable on the space spanned by its direct
causes. In all recursive models, saturated or not, the strong orthogonality conditions
follow from the weak orthogonality conditions and the linear structure. Thus the
causal interpretation in terms of conditional independence is available.

The notion of a linear structural model is more general than the notion of a
recursive model, of course. If we assume a structural model, such as (1), then we
can make alternative assumptions about the residuals, for instance that they are all
uncorrelated. In fact we can easily build linear structural models which are not
recursive at all. Simply write down the model from the path diagram, one equation
for each endogeneous variable, and make some sort of assumption about the
disturbances. By allowing for correlations between the disturbances we can create
saturated nonrecursive models, and we can also get into problems with
identifiability. For these identification problems we refer to the econometric
literature, for instance to Hsiao (1983) or Bekker (1986). Observe that nonrecursive
models can not be translated into conditional independence statements, which has
caused some authors to say that nonrecursive models are not causal.

For a small ecological example we use (a part of) the correlation matrix
given by Legendre and Legendre (1983, Table 5.6). The data have to do with
primary production, and were collected in 1967 in the Baie des Chaleurs (Québec).
There are 40 measurements on four variables. These are:

K: the biological attenuation coefficient which represents the relative
primary production,
C: the concentration of chlorophyll a,
S: the degree of salinity,
T: the temperature.

The correlation matrix, and some simple path models, are given in Table 1. Model
(a) is the saturated model which has T and S as exogeneous variables (level 0), has
C as a variable of level 1, and K as the innermost variable of level 2. Model (b) is
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K C T
C 1 +842
T | +043 +236 Correlations
146 -369 -925 Baie des Chaleurs
Three recursive models
(a) (b) (©)
T = C }0.730( -0.730| -0.730
S = C }.044| -1.044| -1.044
T = K [R0.031| *ex+x 0638
S = K [0.220] **+kx| 0,736
%k %k
Table 1: C o K [R0.916] +0.842 **
Legendre and Legendre
Primary Production Data VERRC | 0.787| 0.787| 0.787
VERRK |0260] 0291 0.520
CERR CK 071
numerical ecology April 14, 1986 16
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not saturated, because the paths from T and S directly to K are eliminated. All effects
of T and S on K go through C, or, to put it differently, K is independent of T and
S, given C. Model (c) is also saturated, but no choice is made about the causal
priority of C or K. Thus C and K have correlated errors, because they both have
level 1.

Models (a) and (c) give a perfect description of the correlations, so the
choice between them must be made purely on the basis of prior notions the
investigator has. We are not familiar with the problems in question, so we cannot
make a sensible choice. Model (b) is restrictive. If we compare it with (a) we still see
that its description is relatively good. If we want to decide whether to prefer it to (a)
we can either use statistics, and see if the description is 'significantly' worse. But
we can also use (a) and (b) predictively, and see which one is better. Our guess is
that on both counts (b) is the more satisfactory model.

Latent variables

Now consider the path models in Diagrams 5 and 6. They are different from
the ones we have seen before, because they involve latent or unobserved variables.
In the diagrams we indicate these latent variables by using circles in stead of
squares. First we give the causal interpretation of Diagram 5. If we project the
observed variables on the space spanned by the unobserved variables then the
residuals are uncorrelated. Thus the observed variables are independent given the
unobserved variable. All relationships between the observed variables can be
‘explained’ by the latent variable, which is their common factor . In predictive
terminology the variance of the observed variables can be 'explained' by this
common factor. In somewhat more intuitive terms a good fit of this common factor
model to the data means that the variables all measure essentially the same property.
A good fit, and small residuals, means that they all measure this property in a precise
way. Again we see that the model can be a good description of the data without
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being a good predictor. Independent variables, for instance, are described perfectly
by the model, but cannot be predicted at all.
The structural equations describing the model are

X; = ajc + & (©6)

The g; are assumed to be uncorrelated with {. Model (6) is saturated and recursive,

but it has the peculiar property that the exogeneous variable is not measured. In De
Leeuw (1984) it was suggested that latent variables are just another example of
variables about which not everything is known. We have nominal variables, ordinal
variables, polynomial variables, splinical variables, and we also have latent
variables. About latent variables absolutely nothing is known, except for their place
in the model. Thus the basic optimal scaling idea that transformations and
quantifications must be chosen to optimize prediction also applies to latent variables.
Consequently latent variables fit very naturally into the optimal scaling approach to
path analysis.

The model in Diagram 6 is a special case of the MIMIC model proposed by
Joreskog and Goldberger (1975). In MIMIC models there are two sets of variables.
The exogeneous variables influence the observable endogeneous variables through
the mediation of one or more latent variables. The MIMIC model combines aspects
of psychometrical modelling with aspects of econometric modelling. It follows from
the MIMIC equations, that the observable endogeneous variables satisfy a factor
analysis model, while the joint distribution of exogeneous and endogeneous
variables is a reduced rank regression model. For Diagram 6 these equations are

§= BiX; +ByXy +PB3Xg +38, (7a)
¥y =yl +ey, (7b)
Yo =09 + &y (Tc)

numerical ecology April 14, 1986 19
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The MIMIC model is closely related to canonical correlation analysis (Bagozzi,
Fornell, and Larker, 1981) and to redundancy analysis (Gittins, 1985, section
3.3.1). Diagram 7 illustrates an application of the MIMIC model to the Baie des
Chaleurs data of Legendre and Legendre. The values of the path coefficients and the
error variances are given in the diagram. The model provides a reasonably good
description, compared with the recursive models in Table 1.

Nonlinear Path Analysis

We now briefly indicate where the theory of optimal scaling comes in. We
have seen in De Leeuw (1986) that optimal scaling (or transformation, or
quantification) can be used to optimize criteria defined in terms of the correlation
matrix of the variables. In path analysis the obvious criteria are the coefficients of
determination, i.e. the multiple correlation coefficients. In De Leeuw (1986) we
already analyzed an example in which the multiple correlation between predictors
SPECIES and NITRO and dependent variable YIELD was optimized. In path
analysis we deal with nested multiple regressions, and we can choose which one of
the multiple correlations we want to optimize. Or in which combination. If there is
no prior knowledge dictating otherwise, then it seems to make most sense to
maximize the sum of the coefficients or determination of all the endogeneous
variables. But in other cases we may prefer to maximize the sum computed only
over all variables of the highest level.

In general nonrecursive models the methods of optimal scaling can be used
exactly as in recursive models. We have one coefficient of determination for each
endogeneous variable, and we can scale the variables in such a way that the sum of
these coefficients is optimized. This amounts to finding transformations or
quantifications optimizing the predictive power of the model. Moreover it is
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567
-.802 .658
-.925
S -1.047 .617 .620
Di 7.
062 agrm
MIMIC model Legendre data
weights metric weights nonmetric  explained variances
metric  nonmetric
wC -.82 .10 -96  -20
BS -.06 11 -.56 39
CM 13 21 -14  -33
LR -.02 .56 28 12
FT g2 -24 22 -.15
CH -.29 .10 -71 43
S1 -79 -09 -.89 22 .39 21
S2 04 -79 30 -.87 .36 21
S3 -8 -35 -88 -.16 22 .16
S4 -95  -10 -.99 21 .13 .04
S5 -97 -.06 -99 22 .08 .04
S6 -91 -13 -95 .19 21 .10
S7 -93 -48 -.98 01 .07 .04
S8 =17 -1 -85 .00 43 27
S9 -.36 52 74 -48 .53 32
S10 .18 .88 .07 .90 25 .16
S11 52 T1 48 1 .36 .18
S12 53 53 57 54 .54 31
Table 2: hunting spider data: metric and nonmetric MIMIC analysis
numerical ecology April 14, 1986 21
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irrelevant for our approach if the model contains latent variables or not. We have
seen that latent variables are simply variables with a very low measurement level,
and that they can be scaled in exaxtly the same way as ordinal or nominal variables.
This point of view, due to De Leeuw (1984), makes our approach quite general. It is
quite similar to the NIPALS approach of Wold , described most fully in Joreskog
and Wold (1982) and Lohmuller (1981).

It is of some interest that we do not necessary optimize the descriptive
efficiency at the same time. Optimizing predictive power is directed towards the
weak orthogonality assumptions. It is possible, at least in principle, that a model
with optimized coefficients of determination has a worse fit to the strong
orthogonality assumptions. Scaling to optimize predictability does not guarantee an
improved fit in this respect. This has as a consequence that there is a discrepancy
between the least squares and the maximum likelihood approach to fitting
nonrecursive path models. We do not go into these problems, but refer the interested
reader to Dijkstra (1981), Joreskog and Wold (1982), and De Leeuw (1984) for an
extensive discussion.

We now outline the algorithm that we use in nonlinear path analysis
somewhat more in detail. We minimize the sum

Z, lix; - X, Byxy I, ®)

over both the regression coefficients le and the quantifications (or transformations)

of the variables. The outer summation, over j, is over all endogeneous variables, the
inner summation, over 1, is over all variables that are direct causes of variable j. The
algorithm we use of is the alternating least squares type (Young, 1981). This
means that the parameters of the problem are partitioned into sets, and that each stage
of the algorithm minimizes the loss function over one of the sets, while keeping the
other sets fixed at their current values. By cycling through the sets of parameters we
obtain a convergent algorithm. In this particular application of the general alternating
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least squares principle each variable defines a set of parameters, and the regression
coefficients define another set.

We give an ecological illustration of this nonlinear PATHALS algorithm.
The data are taken from Van der Aart and Smeenk-Enserink (1975), who reported
abundance data for 12 species of hunting spiders in a dune area in the Netherlands.
A total of 28 sites was studied, and the sites were also described in terms of a
number of environmental variables. We have used a selection and coding from these
data made by Ter Braak (1985). He used the six environmental variables:

WC  Water content, percentage dry weight,

BS Percentage bare sand,

CM  Percentage covered by moss layer,

LR Reflection of soil surface at cloudless sky,

FT Percentage covered by fallen leaves or twigs,

CH Percentage covered by herbs layer.
Ter Braak categorized all variables into 10 discrete categories, because he wanted to
apply a form of correspondence analysis to these data. We have taken over his
categorization.

The results of a MIMIC analysis with two latent variables (factors) are given
in Table 2. Analysis with only a single latent variable were not very successfull. We
first performed a linear analysis, using the category scores from the coding by Ter
Braak, and we then computed optimal monotone transformations. These are given in
Diagrams 8a and 8b. We see a large variety of shapes, convex and concave, roughly
linear, two-step, and so on. It would carry us to far astray to give a detailed analysis
of these nonlinearities. Of course these transformations are only optimal given the
path model, in this case given the number of latent variables, for instance.

For a more detailed discussion and interpretation of the data we refer to Van
der Aart and Smeenk-Enserink (1975) and to Ter Braak (1985), who both
performed forms of canonical analysis. We merely point out some 'technical’
aspects of our analysis, and we compare the linear and nonlinear solutions. It is clear
that the 'explained' variances of the transformed abundance variables increase
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considerably. The table does not give the 'explained' variance of the two latent
variables. For the metric analysis the residuals are .06 and .14, for the nonmetric
analysis they are .01 and .01. Thus the latent variables in the nonmetric analysis are
almost completely in the space of the transformed environmental variables, which
implies that our method is very close to a nonmetric redundancy analysis. The
interpretation of the latent variables is facilitated, as is usual in forms of canonical
analysis, by correlation the latent variables with the transformed variables. This
gives canonical loadings . If we do this we find that the first latent variable correlates
-.75 with both Water Content and Cover Herbs, while the second one correlates
+.80 with Light Reflection and -.80 with Fallen Twigs.

The analysis clearly shows some of the advantages of nonlinear multivariate
analysis. By allowing for transformations of the variables we need fewer
dimensions to account for a large proportion of the variance. Much of the remaining
variation after a linear analysis is taken care of by the transformations, and in stead
of interpreting high-dimensional linear solutions we can interprete low-dimensional
nonlinear solutions, together with the transformations computed by the technique.
Using transformations allows for simple nonlinear relationships in the data, and the
optimal transformations often give additional useful information about the data.

Conclusions

Discussions of multivariate analysis , also in the ecological literature, often
limit themselves to various standard situations, and the associated techniques. Thus
multiple regression, principal component analysis, and canonical correlation analysis
are usually discussed, for situation in which we want to predict one variables from a
number of others, in which we want to investigate the structure of a single set of
variables, or in which we want to relate two sets of variables. The path analysis
techniques, with latent variables, discussed in this paper, make it possible to use a
far greater variety of models, and even to design a model which may be especially
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suited for the data or the problem at hand. Usually the choice of the path model will
be based on prior knowledge the investigator has about the causal relationships of
the variables in the study. Although this far greater flexibility may have its dangers,
it is clearly a very important step ahead because incorporating prior information into
the analysis can enhance both the stability and the interpretability of the results.

The nonlinear extensions of path analysis discussed in his paper allow for
even more flexibility. Not only can we choose the overall structure of the analysis by
choosing a suitable path model, but within the model we can also choose the
measurement level of each of the variables separately. Or, if one prefers this
terminology, we can define a suitable class of transformations for each variable from
which an optimal one must be chosen. The use of transformations can greatly
increase the explanatory power of path models, at least for the data set in question. If
the transformations we obtain are indeed stable, and also increase the quality of the
predictions, is quite another matter. This must be investigated by a detailed analysis
of the stability and the cross-validation properties of the estimates, which is a very
important component of any serious data analysis.

Thus we can say that this paper adds a number of very powerful and
flexible tools to the toolbox of the ecologist, with the logical and inevitable
consequence that these new tools can lead to more serious forms of misuse than the
standard tools, which are much more rigid and much less powerful. The major
hazard is chance capitalization, i.e. instability, and the user of these tools must
certainly take precautions against this danger.
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