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Summary

Non-linear optimal one-dimensional transformations of stochastic
variables are given by the eigenvector belonging to the dominant
eigenvalue of the correlation matrix of the transformed variables.
The corresponding loss-functions and interpretations are presented
together with other work in this context. Two special cases are
derived where we respectively know the distribution of the stochas-
tic variables beforehand and thus the type of the optimal transfor-
mations and the case where we can approximate the optimal continuous
non-linear transformations with discrete stepfunctions. A random
study with bootstraps (Efron,1979) using three sample sizes and five
types of distortions of discretized continuous multinormal random
variables is presented to illustrate the discrete approximation of
the continuous transformations. Eigenvalues and optimal transforw
mations are nicely recovered by the discrete technique. The under-
lying distribution is recovered for all sample sizes and all dis-
tortions. The algorithm and computerprogram of the discrete approxi-
mation technique are presented and previous interpretations and

alternatives are discussed.
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1. INTRODUCTION AND NOTATION

l1.1. INTRODUCTION

Computing the first principal component of the correlation
matrix to define linear weights for the variables has inter-
esting optimal properties. This applies both to the population
matrix and the sample matrix. The explicit use of the first
principal component as linear weights to construct a one -
dimensional scale originates with Horst (1936) and Edgerton

& Kolbe (1936), although it is implicit in Pearson (1901) and
Hotelling (1933).

In this paper we define non-linear weights as optimal if the

dominant eigenvalue of the correlation matrix of the weigthed
variables is as large as possible. This generalizes optimal
linear weighting (Gifi, 1980). The approximation of continuous
non-linear transformations with discrete stepfunctions from a
finite basis is a special case of applying non-linear weights.
This technique is called non-linear principal components analysis
of categorical data a.o. by Guttman (1941), Johnson (1950),

Lord (1958), Bock (1960), De Leeuw (1973), Nishisato (1978), and
Gifi (1980). The corresponding computerprogram used in this study
is called HOMALS (Van Rijckevorsel and De Leeuw, 1980).

Another special case of applying non-linear optimal weights

uses orthogonal polynomials as an infinite basis. These func-
tions are the Hermite-Chebyshev polynomials in the case of the
multinormal distribution. All bivariate distributions are dia-
gonalized here, we know the form of the optimal transformations
and linear- and non-linear weighting amounts to the same thing.
Another relevant fact for this study is that the results of non-
linear weighting are invariant under one-to-one non-linear trans-
formations of the variables. The recovery of the original dis-
tribution for three different sample sizes and five different
non-linear transformations is presented here; the results are
compared with theoretical population values for all transfor-
mations. To get an idea of the variation and stability of the
parameters we used a simulation method, because analytical methods

are too expensive.



The simulation method we used is called the bootstrap method
(Efron, 1979-1). It is a convenient and simplified version of
the Quenouille-Tukey jackknife.

The mapping of a continuous interval into a point by means of

a non-linear transformation is called discretization. We can

think of several discretizations that either match types of
frequency distributions that occur with real data or that follow
the normal curve " as good as possible ". We have chosen for
three discretizations of the first kind: skew, equal and U-shape,
and two of the latter: optimal and pseudo-optimal.

What we want to know is: what happens if one uses this non-
linear weighting technique (i.e. HOMALS) on some discretizations
of a continuous distribution ? We want answers to questions like:
does HOMALS transform to multinormality and does HOMALS symmetrize
skew distributions etc. We employ a kind of sensitivity analysis
that shows how the non-linear weighting procedure behaves in an
ideal situation and to what extent the results change if we
change the data. The ideal situation here is the multinormal
distribution, because this simplifies the theory of non-linear
weighting. It makes it possible to approximate the population
parameters, which on their turn are approximated by our HOMALS
solutions. We are well aware of the fact that in many situations
the assumption of multinormality is both not very realistic and
difficult to test.

1.2 NOTATION

We have a finite set N of individuals and a finite set of

variables. There are n numbered individuals N = {Ul,uz,...,un}
and m variables with index j. A variable is a function nj
that maps the set N into the set K.. The k. elements of Kj are

the categories of a variable: Kj = {Ki,Kg,...,Ki_}.
J

The datamatrix H is an n x m matrix with hij = nj(Ui). Every
hi' is an element of Kj’ but it is not necessarily a number.
If Kj = {l,2,...,kj} then the matrix H will contain the category

numbers.



The variable nj: N +Kj defines an n x kj indicator matrix. This

is a (0,1)-matrix Gj with

I -1 ; = 1]
9ir T 1 if rIj (Ui) = krl
and
I - o ; J
93, 0 if nj(Ui) # kr.
The index of the category numbers is r = l,...,kj.

Every row of Gj contains exactly one element equal to one so all
rows of Gj add up to one. If we introduce an additional n-element
vector u equal to one, then we can say that the column totals

of Gj are the elements of dj A Géu. If Dj is diagonal with Dju = d.

J
then GéGj = Dj; the columns of Gj are thus orthogonal.

Define also C., 6 A GﬁG This is the contingency table of variables

j and 2. It iggsometiies convenient to combine all G. matrices

in one single supermatrix G with dimensions n x (Z? k.). The (Z? kj)
X (Z? kj) matrix C = G'G has m2 submatrices Cj with 3imensions

kj x k We can collect the block diagonal submatrices ij = Dj
in a (Z? kj) X (Z? kj) diagonal supermatrix D. The matrix C con-
tains the bivariate marginals and the matrix D the univariate
marginals. The matrices C,D,G and H are respectively shown in

the tables 1.1 , 1.2 , 1.3 and 1.4.

abc pgr uvw aboc pgr uvw
a 6 00 50 a 090
11 00
20 00
P 1 8 0 o) 8 0
q d
r 0 0 r 0
0
1 000
W 000 00 00

Table 1.1 The bivariate mar-

~ginals (matrix C).

Table 1.2 The univariate

mar-—

ginals (matrix

D).




abc pdadr u v w
100 100 100 apu
010 010 010 bgyv
100 001 010 arv
100 100 100 apu
010 100 010 bpv
001 100 010 cpvVv
100 100 100 apu
100 100 010 apyv
0 01 100 010 cpvVv
100 100 010 apyv
Table 1.3 The indicator Table 1.4 The data
matrix ( matrix G). matrix H

We also want to use this notation for stochastic variables for
which N is infinite. The variable nj then defines a stochastic
variable Ej whose values are in Kj' which is a subset of R.
E(Ej) denotes the expected value of Ej’ V(Ej) is the variance.
C(Ej’hz) is the covariance and R(Ej’gl) is the correlation of

Ej and El'

2. OPTIMAL WEIGHTS

2.1. LINEAR WEIGHTS

We want to find linear weights aj for the stochastic variables

hy, ...

that a new stochastic variablemg with E(E) = 0 resembles the

’Em with E(Ej) = 0. This is to be done in such a manner

weigthed variables ajEj’ j=1,...,m , as much as possible. This
"resembling" as much as possible can be stated more formally as
the minimization over a and z of the following gquadratic loss

function

m
. V(z - a.h.
3 (z J_J),

B+

o(z;a) =

with normalizations either on a : a'Da = m, or on 2z : V(z) = 1.
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These normalizations are needed because we want to get rid of
the solution with o(z;a) = 0 and z = 0 and a = 0. We will omit
the proof that both normalizations lead to the same minimum.

The plausability of this result is enhanced by the following

two interpretations of o(2z;a). Depending on the particular nor-
malization one can describe the minimization of o(z;a) either

as choosing a vector z such that the average squared correlation

of z with h., is as large as possible with the normalization

V(z) =1, or as the maximizing of the sum of covariances
m .m . . m

B=2%Y., %, C(a.h.,a,h while the sum of variances T = Z. V(a.h.
J TR ( =3’ o) J ( ]—])

is held constant. The final loss irrespective of normalization
is

g(*;%) =1 -~ A+,

where A+ equals the dominant eigenvalue of % R(ajhj'azhz) and
=1, X,

equals the average squared correlation. Both normalizations lead

where, in terms of the other normalization V(E)

to the same results but differently scaled. The corresponding

normalized eigenvector enables us to find the optimal a and z.

2.2. NON-LINEAR WEIGHTS

We can formulate a loss function for non-linear weighting, that
is to be minimized over z and ¢, analogously to the linear weights

loss function

1 .m
o(z; == 73.V(z - ¢.(h.)),
(z;9) m 23 k4 ¢](_]))
with the normalizations either Z? V(¢j(2j)) =m or V(z) = 1.

The non-linear transformations ¢j(Ej) have to resemble the
scale z as much as possible. The analogy with the linear case
applies not only to loss function and normalizations but also
to their interpretations, although the transformations are
now noh—linear and the minimization of o(2z;¢) is rather com-
plicated. In both the linear and the non-linear case, we are
looking for a stochastic variable 2z, such that the average

correlation ratio of z with hj is as large as possible. We
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define the correlation ratio as the conditional variance of_E
given.Ej, divided by the variance Of.E' This ratio equals the
squared correlation coefficient in the linear case. The maxi-
mum averaged correlation ratio is equal to the dominant eigen-
value A+ of % R(¢(Ej)’¢(hﬂ))’ with R as the correlation matrix
of the non-linear transformed variables. The final result is

again

o(*;%) = 1 - A+.
The derivation of this result is due to Gifi (1980). We will
have a more detailed look at this, not only to show that the
minimal loss can be found but also because we need some of
these results in the sequel.

We want to minimize o(z;¢) over z and ¢ with the normalization
m

5. V(¢ (h. = m.
L V(95 (hy)

Define
o(*;¢) = min {o(z;¢):2z}.

The minimum is attained for

z == 16

. (h.),
595 (hy)

=J
and if z?v<¢j(gj)) = m, then

_ _ =2 Jm.m
o(*,¢) =1 m ijg (¢j(gj),¢2(g2)).
Thus the original problem is equivalent to minimizing
the sum of covariances, while keeping the sum of the variances
equal to a constant.

Define for each variable space

on = {9,E(0;(hy) = 0 & V(o(hy)) < =3,

a complete orthonormal basis gjs’ s =1,2,... , such that for

every s and t

C(gjs(hj)rgjt(hj)) = 6St ’



with 6st the Kronecker delta. This entails that the elements
on the diagonal of the m x m covariance submatrices CSt (s#t)
between dimensions s and t are zero, the diagonal elements
of CSs are equal to one. We can express the transformations

of every variable as

¢j(hj) = Ig ajsgjs(hj)
and hence
Cloy(hy) 6, (h)) = I] Blas a, Clgy (hy) gy, (hy)).

The sum of covariances in this context is

—_ © ]
B = Zs Zt ascstat’

and the sum of variances is

The characteristic equation is

r, C ,a, = Aas

t Tstt

The difficulty is, although this is an eigenproblem, that we
are dealing with eigenvalues of an infinitely large supermatrix
that consists of an infinite number of m x m correlation matrices.
It is not particularly easy to compute such eigenvalues except
for special cases where additional assumptions can be made. And
yet we can use this derivation very well for our purpose,
because on one hand we will deal with that special infinite case
where we can compute those eigenvalues and on the other hand we

will discuss the situation where we can approximate those eigen-

values with finite bases.

2.3 THE SPECIAL INFINITE CASE

With one extra restriction on the infinite correlation matrix of

paragraph 2.2 we obtain a new vista of simple results and inter-



pretations. The extra restriction is that we chose our bases in
such a way that

R(gyq(h),gy, (hy)) = 6

js strsj

This implies that in terms of the covariance matrix C from the
last paragraph we now also assume that all correlations and
thus all covariances between dimensions are zero. And this
again means that all bivariate distributions are diagonalized.
If we use Hermite-Chebyshev polynomials as an infinite basis
such diagonalization is allowed for the bivariate normal dis-

tribution and for this distribution we may say

B= 15 a'R
- s%s"s?s !

and the total minimal loss is equal to

_ - 1
o(*:%) =1 - max A+(Rs).

We can inspect all Rs separately because the covariances
between dimensions are zero. Meanwhile we can always choose ag
as an eigenvector of one of the Rs so that at = 0 for all s # t.
For a given s this reduces the number of possible vectors of
weights to one: agr and if gjs are orthogonal polynomials

all optimal transformations, (gj), are of order s.

a. g.
Mehler’s formula proves that rij 15(rj )% in case Hermite-
Chebyshev polynomials are used with the bivariate normal dis-—
tribution. The index s has turned into the power s (Tricomi,

1955 page 254). Another result discussed by Styan (1973) is that,
if R(s) denotes the matrix with s-powered correlations, )
A+(R(l))> A+(R(2))> ... . The final loss for the normal dis-
tribution amounts to

_ 1 (1)
*¥e%) = - -
O (%) %) 1 A (R ).
This result is exactly the same as the one in paragraph 2.1 for

linear weights where the same minimum was found for ¢j(gj) = ajhj'



Or in other words: applying linear or non-linear weights in
this one dimensional case makes no difference. We explicitly
fit a linear function in paragraph 2.1 and in the non-linear
case the linear function happens to be the best fitting non-
linear function. It is clear what we mean by non-linear: not
necessarily linear. We will return to this subject later on.

It is important to realize that only in this particular case

we know that linear functions are the best fitting ones. If for
for instance we had mixed two multinormal distributions with
identical correlation parameters but with opposite sign, then
quadratic functions would have shown the best fit. And only

a non-linear technique would recover these functions. Future
research is needed to show the behaviour of other distributions

in this context. Another rather important result is that, if

with eyr-

transformations, then our non-linear weighting procedure

-y multinormally distributed and wj one-to-one

will find the following optimal transformations

-1

b3 By = ayvy (By) = ajey.
So if we distort the multinormal distribution by using a
one-to-one non-linear transformation the original under-
lying distribution will be recovered by our technique. We
will show in paragraph 3 how this recovery is achieved
for several serious distortions of the normal distribution.
The work in this paragraph is based on De Leeuw (1973) ,and

Gifi (1980). See also Hill (1974).

2.4 .HOMALS OR THE APPROXIMATION OF CONTINUOUS NON-LINEAR
TRANSFORMATIONS WITH FINITE BASES

The minimization of a non-linear loss leads to an eigen-
problem that is not easy to solve, see paragraph 2.2. An
alternative with more manageable matrices becomes feasible

if we use orthonormal bases for finite dimensional subspaces of
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&:j. The space of functions‘Lj is a separable Hilbert space
which has a denumerably infinite dimension, because we confine
ourselves to functions of Ej with finite wvariance. Another re-
striction that we need is that we partition the space induced
by Ej into a finite number of measurable sets and define the
gjs as indicator functions of those sets. This means that for
every j a basis of indicator functions is used with a finite
number of elements in that basis. In this new basis C and a are
partitioned into variables in stead of dimensions. The indicator
functions define stepfunctions which are used to approximate
the non-linear transformations ¢j(Ej)' The matrix C becomes now
the supermatrix with bivariate marginals and the matrix D the
diagonal supermatrix with the univariate marginals. The indexes
are changed because of the new partitioning. Note the fact that
the indicator functions are orthogonal and not necessarily ortho-

normal. So the respective sums of covariances and variances are

— me.m_,
B = ijzajCanQ’
and
T = Zma!D.a..
J 133

The characteristic equation is

m —
ZQCan2 = mADjaj.

The stationary equation that we find if we require V(z) =1 is

with Pj the orthogonal projector on the subspace spanned by the
gjs(hj)' These two eigenvalue problems have the same eigenvalues

because they are both derived from the singular value problem

(h.),

93525

1
— m

>4

N
N
il

m L . oo
L.¢. (h. d ‘6. (h.) = .
J¢J(_J) an A ¢]( ]) ZSaJS

with a C(gjs(hj),z)/V(gjs(hj)).
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This discrete finite approach can be interpreted in two ways.
First as a method to find the optimal transformation ¢j(hj)
in case hj is a discrete stochastic variable with kj
different values. This is the interpretation of Horst (1936),
Guttman (1941), Johnson (1950), Lord (1958), Bock (1960),

De Leeuw (1973) and Nishisato (1978). And secondly as an ap-

proximation of the optimal transformation ¢j(hj) with a step-

function with kj steps. This approach is more common to the
French school like Dauxois & Pousse (1976) and Lafaye de
Micheaux (1978) and it is the approach advocated in this paper.
Both interpretations are treated by Gifi (1980) and Stoop (1980).

The computerprogram that solves the stationary equations from
the previous section is called HOMALS. Before we discuss the
algorithm it is necessary to realize that z is now a vector of
length n and the sum of squares of z is equal to n, z contains
the values of z and SSQ(z) correspond with V(z). The optimal
transformafion is G.aj, where Gj is an n x kj indicator matriT
and aj = Dj Gﬁz. The orthogonal projector Pj is equal to Gij Gﬁ.
The algorithm is iterative and one iteration consists of the two
steps (1) and (2). The values of a preceding iteration have a

° and the updates in the next iteration are indexed

high index
with ~. The algorithm starts with standardized random numbers
between 0 and 1 as an estimate of z. Steps (1) and (2) are alter-
nated until the difference in stress between two successive

iterations is smaller than a previously decided small number.

(1) a’ = D lgtzo
j j
-1
(2) 2" = 3 (') 2
with 5 = s Gg.al.
s I

Step (1) is executed succesively for all variables within one

iteration. The stress is equal to 1 - % Z? aﬁDjaj and the loss
is minimized over z and a with restrictions S$SQ(z) =1 and u'z = 0.

The computerprogram and algorithm are actually p-dimensional
with matrices Z (n x p) and Aj (kj x p). The value of p is chosen
by the user. In this paper we only discuss the situation where

P = 1. The algorithm is fast and efficient because the sparseness
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of the indicator matrices reduces multiplication to addition
while each indicator matrix is stored as a vector, and because
the iterative approach of singular vectors is used in stead of
a complete eigenvalue decomposition. Although Richardson sug-
gested this algorithm in a rudimentary form in 1935, the non-
linear weighting problem was always solved by the complete
eigenvalue decomposition of the scaled C matrix of bivariate
marginals, which made the analysis prohibitive if the number
of categories was very large, cf. Lingoes (1968). The ALS al-

gorithm here was suggested by De Leeuw in 1976.



3. HOMALS IN MONTE CARLO

3.1 DISCRETIZATION

We want to approximate continuous non-linear transformations
with a discrete technique. This entails that continuous
variables are discretized by mapping continuous intervals into
points with stepfunctions. This problem is known as quantization
in communication research, the communication theory people have
also studied optimal discretizations. But here we are interested
in non-optimal discretizations as well. The idea is that we de-
liberately distort the multinormal distribution by our discreti-
zations up to a certain degree. The range varies from optimal
via pseudo~optimal, U-shape, equal to skew discretization. The
number of intervals is arbitrarily fixed at five. Two discreti-
zations follow the original distribution rather closely, the
other three on the contrary ignore the original distribution
and are modelled after some common types of marginal distribu-
tions in data analysis. There exists a loss function that ac-
tually describes the loss caused by a certain discretization

for a fixed number of categories with respect to the normal
distribution. This loss can be computed for all our discreti-
zations and we assume that it will be minimal for the optimal
approach, that is why we call it optimal, and larger for the
other discretizations. The loss , which is to be minimized over
all stepfunctions ¢ (h) with five steps is

e = v - o0 2,

where h is univariate standard normal.
Max (1960) computed optimal discretization points for several
numbers of categories and the corresponding minimal 82 values.

For further details and many references see Gifi (1980).

Tables 3.1 to 3.5 illustrate the discretizations we used with

the discretization points and corresponding histograms.
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The optimal discretization. This approach is optimal in the sense

that it minimizes Max's €2 parameter and compared with our other
discretizations with the same number of categories, it will
produce the greatest eigenvalue. The distribution of the surface
under the curve over intervals is: .1067 .2444 .2978 .2444
and .1067 . The total surface under the curve is equal to one.

The corresponding histogram is rather flat. See figure 3.1

.
. B 3
’ . H
s

.
s
.

~-1.2444 =0.3823 0.3823 l.244%

e e e ,2978
—————————— 2440
- -__ .10867
1 p) 3 4 5

Figure 3.1 Histogram and discretization points of the optimal discretization.

The pseudo-optimal discretization. %e have also computed a

" quick " approximation to the optimal discretization. The sur-
faces under the curve corresponding to the intervals are: .1

.2 .4 .2 .1 . The curve and histogram are shown below.

1 t

1 |
i ! |
] 1

)
-1.2816 -0.5244 0.5244 1.2816
————————————— )
- - -~ - = =920
- —=—-.10
1 2 3 I 5

Figure 3.2 Histogram and discretization points of the pseudo optimal discretization.
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The U-shape discretization. The shape of the histogram in

figure 3.3 needs no explanation. The distribution of the sur-
faces under the curve is .3 .15 .1 .15 .3 . This U-shape
pattern is often found in questionnaires with rating scales
of the type: strongly agree-agree-neutral-disagree-strongly

disagree. The curve and histogram are shown below.

-0.5244-0.1257§ 0.5244

0.1257
“““““ .30
. _ _..15
- —— — 10
1 2 3 N 5

Figure 3.3 Histogram and discretization points of the U-shape

discretization.

The equal discretization. Again the picture in fig. 3.4 is self-

explanatory. The distribution of the surface under the curve is

obviously .2 .2 .2 .2 .2

[ T
1 | | T
! I ! |
1 | { 1

-0.8416 -0.2533 0.2533 0.8416

—_— e e - @+

Figure 3.4 Histogram and discretization points of the equal discretization.
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The skew discretization. This discretization together with the

U-shape is the least 1like the normal distribution. The surface
distribution values are: .45 .25 .15 .10 .05 . See fig. 3.5

‘//—r\
| 1 1
I I I 1

-0.1257 -0.5244 1.036k4 1.6449

- -

1 2 3 4 5

Figure 3.5 Histogram and discretization points of the skew discretization.

One has to keep in mind that all discretizations here are results

of non-linear monotonic transformations.

3.2 THE POPULATION VALUES OF THE HOMALS PARAMETERS.

As in paragraph 2.3, in the one-dimensional case with multinormally
distributed variables, the opntimal ¢j equals identity, and A+

is the greatest eigenvalue of % R, in which R is the correlation
matrix of the variables. In this Monte Carlo study we have 9
variables, all with variance equal to 1, and all mutual
correlations are equal to .5, so for the continuous distribution

the dominant eigenvalue is

Ay

5/9 = .5556

(For an m x m matrix with all diagonal elements equal to 1 and
all off-diagonal elements equal to p, the greatest eigenvalue
is of course 1 + (m - 1)p and the corresponding eigenvector
has equal elements.)
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After the discretization in one of the five ways from par. 3.1,
we can compute the bivariate probability distributions for each
pair of variables. The probability that wvariable j is in category
i and variable £ is in category k is equal to the probability
that Ej is in the i-th interval and Ez is in the k-th interval,
where Ej and EZ have variance 1 and covariance .5. The intervals
are defined by the different types of discretizations.!)

Once we have these probabilities, we can compute the optimal ¢j
and Ay by means of HOMALS.

Though we are dealing with nine variables , we can compute the
population values by using only two variables. Owing to sym-
metry we can then translate our results to the case of nine
variables. The results are given in Table 3.1. All nine variables
have by symmetry identical optimal transformations for each kind

" of discretization.

OPTIMAL  PSEUDO- U-SHAPE EQUAL SKEW

category
number OPTIMAL
EIGENVALUE 0.5216 0.5183 0.4873 0.5135 0.L49s5h
1 -1.7225 -1.8212 -1.2156 -1.4114  -0.8729
- -0. -0.6078 -0.70 ~0.0L430
S OPTIMAL 2 0.8612 0.9106 0.607 7057 o
TRANSFORMATIONS 3 0.0 0.0 0.0 0.0 0.7
L 0.8612 0.9106 0.6078 0.7057 1.,6167
5 1.7225 1.8212 1.2156 1.4114 2.4465
EIGENVALUE .5222 .5183 .1938 .5160 4981
1 —1.771Lk  -1.8150 -1.2612 -1.4630 -0.9186
- -0. -0. -0.5901 0.09k2
NON- OPTTIMAL 2 0.8165 0.9169 0.3763 59 ° 223
. 0.0 .
LINEAR TRANSFORMATIONS 3 0.0 0.0 0.0 7
U 0.8165 0.9169 0.3763 0.5901 1.4776
5 1. 771k 1.8150 1,2612 1.4630 2.4703
Table 3.1 The approximated theoretical population parameters.

1) These probabilities are actually computed for an approximation
of the normal distribution: the sum of 12 uniform (%,% variates,
This is done, because all our samples are taken from this dis-

tribution using the SSP Fortran subroutine GAUSS.



3.3 THE BOOTSTRAP.

3.3.1 DESCRIPTION.

As a method for estimating the variance of the various HOMALS
parameters we use the Efron-bootstrap (Efron, 1979-1). This
method amounts to the following:

We have n observations, from which we compute the HOMALS para-
meters. Next we take a bootstrap sample. This is a sample with
replacement of size n taken from the original set of observations,
where all observations have a probability of n_1 to be taken.

We apply HOMALS on this bootstrap sample. This procedure is
repeated several times, each sample taken from the original set
of observations. For all HOMALS parameters this gives us a num-

ber of replications.

3.3.2 STATISTICAL APPROACH.

In HOMALS we are dealing with categorical data: we have a finite
number of variables, each of which can assume a finite number of
values. Suppose the n observations we start with consist of a
random sample from some unknown population. In this population
only a finite number, say q, of sets exists in such a manner
that all members in one set have the same score on all variables,
and members of two different sets have different scores on at
least one of the variables. We can represent the probabilities,
that we sample a member of a certain set by a vector m ¢ rRY con-
sisting of non-negative numbers adding up to 1.

A sample of size n can be represented as a vector in R? of obser-

(n)

ved frequencies, as well as a vector x ¢ RY of observed relative

(n)

ignores the information about

(n)

frequencies. The representation x
the total number of observations, but the advantage is that x
is an estimator of w. And the HOMALS parameters do not change
anyway if all frequencies are multiplied with a constant (Gifi ,1980).
This is why we can define a set D : = {x ¢ Rq; X, >0 1A =1,...,9,
Z? X, = 1} and we can write every single HOMALS parameter as a
function £ : D » R.



If x(n) is an estimate of m,then f(E(n)) is an estimate of f(mw).

Now we can use the bootstrap method to estimate the bias and

(n) ).
(n)

variance of f(x We can represent a bootstrap sample

(n)).

originating from x as a vector y(x Once again this is

a vector of non-negative numbers adding to one. We construct

X(E(n)) by taking a sample of size n from a multinomial distri-
(n), and by considering the corresponding
relative frequencies. Note the fact that going from x(n) to

(n)

X(E(n)) is essentialy the same as going from 7 to x . This

bution defined by x

leads us to the conclusions that,with weak restrictions on f

(Bettonvil & De Leeuw, forthcoming)

Ef(x™) - £(m; BOE £(yx™)) - 2 ™y ™
v e iEw £y ™)) ™)

are of order n ! and that

€ £x™) - £ - @E £E™)) - 2= ™)
and

w £x™)) - @B ™)) ™))

are of the order n 2
Thus we can use the bias of f(z(g(n))) with respect to f(z(n))

as an estimate of the bias of f(x(n)) with respect to f(m); and
N (n)

analogously we can use the variance of f(Z(E )|§(n))as an es-

timate of the variance of f(§(n)).
We now define a new estimate of f(rw), which we call the bootstrap

pseudovalue
2 f(§(n)) - f(l(§(n))).

This new estimate has a bias of order n_2. In this paper we only
refer to these pseudo values. In the Efron-paper the bias reducing
version of the bootstrap was not given, and consequently bias re-
duction seemed to be an advantage for the Quenouille-Tukey jackknife
(Miller, 1974).
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Other reasons why we prefer the bootstrap over the jackknife in
this application are the independence of the bootstrap replications,
the simplicity of the method and the possibility to take ‘:as

many bootstrap samples as desired.

3.4 THE RESULTS.

3.4.1 THE TRANSFORMATIONS.

The main result is evidently the recovery of the multinormal
distribution for all discretizations and nearly all sample-

sizes. 'This conclusion is based on the monotone transformations

of the discretized intervals. We have seen in par. 2.3 that

the optimal transformations were linear and thus monotonic.

The discretization disturbed this linearity somewhat but the
weaker constraint of monotonicity should hold at all events.

This is the case, apart from six violations, i.e. wrongly

placed categories, in the analyses with n = 100. See fig. 3.6
3.15and 3.18.The larger samples of 1000 and 10000 observations
have all monotone transformations. This means that even for the
worst distortitions, like skew and U-shape, the original dis-
tribution is recovered for nearly all samples.

However we are not only interested in recovery but also in the
stability of the transformations. The bootstrap points in figures
3.6 > 3.20 are very illustrative in this respect. The more they
are spread in a vertical direction, the more unstable the trans-
formations are. The S-points in these plots are the sample trans-
formations and as such the estimates of the P-points,

population transformations. The #%*-points, the Bootstrap transfor-
mations are also estimates of the P-points but on the other hand
the dispersion of the %-points is an estimate of the dispersion

of the S-points. Really unstable transformations occur only when
both the sample-size is small (=100) and the original distribution
is heavily distorted like it is the case with the skew and U-shape
discretization and to a lesser extent with the equal discretization.
The most obstinate in this respect is the U-shape discretization.
Not surprisingly this is the discretization with the smallest
population eigenvalue. The direction of the deviations in itself

are also interesting (Bettonvil & De Leeuw, forthcoming).
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3.4.2 THE EIGENVALUES.

The discretized population eigenvalues from par. 3.2 are nicely
approximated by all our samples. In section 2 we extensively
discussed the properties of these eigenvalues. The population
eigenvalues, the sample eigenvalues, the means of the pseudo
bootstrap eigenvalues, and their variances for all discretizations
are collected in table 3.2 for the linear case and in table 3.4
for the non-linear case. The relation between eigenvalue and type
of discretization is already discussed in par. 3.2.

The approximation of the population eigenvalue is bettér as the
sample size increases and there is no discretization whose eigen
value is better approximated than those of the other discretizations.
Also the variances seem to be independent of discretization.

The bias reduction of the bootstrap values is only effective for
the discretization with the smallest eigenvalue. The eigenvalues
of the non-linear approach tend to be somewhat larger than the
linear ones, especially for smaller sample sizes. The non-linear
approach has more freedom to correct for the discretization bias

and for the small sample bias, which explains this phenomenom.

BOOTSTRAP
POPULATION N SAMPLE MEAN VARTANCE
100 . L1665 sk 7.8*Jo‘u
OPTIMAL .5216 1000 .5313 .5355 1.@*10'h
10000 .5192 .5206 1,0%107°
-l
100 .5140 .5135 7.h%10
PSEUDO- -5
OPTTMAL, .5183 Jooo .5261 L5247 9.6»510_5
10000 .5189 .5197 1.3%10
100 53 L1519 u.7*1o'h
U-SHAPE 873 1000 L1950 Lol 1.8=r-10"h
10000 L4897 .4899 3.5*10'6
100 k38 hh6l 1.6%1073
EQUAL .5135 1000 .5038 .4969 1.1*10‘h
10000 .5161 ,5151 8.9*10‘6
100 .52L) .5252 1.1%1073
SKEW Jhosh 1000 .5153 .5156 2.1*10'h
10000 .L4951 .Lhosh 5. 1%10”°

Table 3.2 Eigenvalues of the linear trangformations.
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BOOTSTRAP

POPULATION N SAMPLE MEAN VARTANCE

100 1836 L7622 9.6*10'h

OPTIMAL .5222 1000 .5339 . 5369 9.6%107°

10000 .5197 .5208 1.2*10'5

100 .5360 .5229 9.0'410"ll

PSEUDO- -5

OPTIMAL .5183 1000 .5293 .5270 9.3=mo_5
10000 .5192 .5198 1.3%10

100 4876 4582 1.1¥1of3

U-SHAPE .1938 1000 .50L45 .5013 1.6*10“h

10000 .LogL .Lo6k h.6*10’6

100 . 1606 .4359 1.0%1073

EQUAL .5160 1000 .5069 .4988 1.0*10'h

10000 .5185 51Tk 8.9*10'6

100 .5535 .5327 1.3%1073

SKEW L1981 1000 5187 .5169 1.8*10"h

10000 .4985 .Lo8hL 2.0%107°

Table 3.3 Eigenvalues of the non-linear transformations.

3.4.3 PERMUTED CATEGORY SCORES.

The fact that the linear transformations are the

best fitting

transformations for the discretized normal distribution requires

that the category numbers are monotone with the order of the

intervals of the continuous distribution and that they are

equally spaced. These restrictions are not relevant for non-

linear transformations. We have permuted the category numbers

and the tables 3.4 to 3.7 show clearly that linear fit has become

very poor while the non-linear fit is as good as
fortunately we failed to use only one sample for
The non permuted linear analysis is performed on
as the permuted run. But because of large sample
assume that the parameters are in the same order

samples

ever. Un-

this experiment.
another sample
size we may

generalized over
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over samples. It is worth noticing that the linear analysis
used approximately 12% more CPU in,the permuted case than in
the non permuted case. We used the correlation matrices because
they illustrate the effect nicely. These are the correlations
computed with the optimally, linear or non-linear, transformed
variables. The according transformations are shown in figures
3.21 and 3.22.

0.080
0.017 -0.021
-0.217 ~0.104 0,025
-0.290 -0.099 0.010 0.188
-0.343 -0.089 -0.006 0.215 0.260
0.247  0.036 0.018 -0.106 -0.133 -0.181
-0.015 0.058 -0.033 -0.020 -0.020 -0.012 =-0.010
0.072 0.013 =0.003 =0.041 -0.053 =-0.054 0.02Lk -0.006

A = .2163 (Sample 1)

Table 3.4 The correlation matrix based on linear transformations

of permuted category numbers; n=10000, Skew.

0.428

0.430  0.L3h A= .hokg (Sample 1)

0.432  0.434  0.437

0.441  0.L437 o0.Lkh2  0.L432

0.430 0.428 0.438 0.437 0.L436

0.432  0.427 0.Lk2  0.k22  0.L27  0.432

0.L46  0.43L  0.426 0.436  0.435 0.428 0.L419

0.k23  0.41L  0.428 0.L26 o0.4k6  0.418 o0.Lk27T  0.438

Table 3.5 The correlation matrix based on non-linear transfor-

mations of permuted category numbers; n=10000, Skew.

L3

138 A= .4951 (Sample 2)

0
0 0.437

0.436  0.hLk4  0.428

0.4k26  0.434 0.435 0.L3L

0.435 0.4kk1  0.432  0.Lk31  0.430
0 0.427  0.436  0.435 0.L3Lh  0.k423

0 0.423 0.425 0.Lk27  0.432  0.4L29  0.L31

0 0.431  0.437 0.433 0.L432 0.k26  0.hkk5  0.k22

.L30
15
o5

Table 3.6 The correlation matrix based on linear transformations

of non-permuted category numbers; n=10000; Skew.
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0.4h6

0.441  0.Lko A= 1985 (Sample 2)

0.441  0.448 0.L432

0.429  0.438 0.438 0.438

0.440  0.445 0.43%  0.434  0.L432

0.434%  0.434% o0.441  0.bhbk1  0.437  0.h29

0.479 0.428 0.428 0.431 0.434% 0.434 0.h435

0.k27 0.436  o0.L41  0.435 0.434 0.429 0.4k9 0.h25

Table 3.7 The correlation matrix based on non-linear transfor-

mations of non-vpermuted category numbers; n=10000, Skew.

To show the permutation effect we arbitrarily chose the skew

discretization.

3.5 THE PROCEDURE.

We generated a random sample of nine continuous multinormally
distributed centered variables with variance equal to 1 and an
overall correlation coefficient equal to .5.

For each discretization we partitioned such a sample into five
continuous connected non-overlapping intervals. All elements in
such an interval are categorized into a discrete category with

a corresponding category number.

We computed the optimal linear transformations of the discretized

sample with a singular value decomposition and used these optimal

values as an initial configuration for the computation of the

optimal non-linear transformations with HOMALS.

10 random bootstrap samples with replacement and with the same
size as the earlier mentioned discretized sample were taken from
this discretized sample. Linear and non-linear optimal transfor-
mations were computed of each of these samples.

We repeated this procedure for five different discretizations and
three different sample-sizes. For all these 15 combinations we
used different samples. This means 15 different samples and 150
different bootstrap samples taken from these 15 discretized samples.
The computer program that computes the non-linear transformations
is called HOMALS and the computer program that embodies both the
optimal linear transformations and the optimal non-linear trans-
formations in one analysis is called PRINCALS (De Leeuw & van
Rijckevorsel, 1979). Both programs are fully documented and they'
are available from the Department of Datatheory, Breestraat 70,

University of Leiden.
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