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ABSTRACT

The paper discusses some possible solution for the ana1ysis of relations among
k sets of variables. The general approach is that for each of the k sets a
Tinear compound s calculated. Relations among sets then can be described in
terms of relations between k such compounds.

A first possibility is to base the analysis on sets Pi (i=1,..,k), where P. is

th set. The alternative is to base

an orthogonal and unit-normalized basis of the i
the analysis on principal components of each set, written as Piwi'

Linear compounds are Piti or Piwiti‘ The second major consideration is whether
weights ti are restricted by zt%ti=k, by t%ti=1, or by T;Ti=I (where Ti collects
different solutions for ti in its columns).

The paper illustrates these different procedures in terms of their geometrical
properties.

The paper then shows how these solutions work out for analysis of sets of
nominal variables. This results in "optimal quantification", both of categories and
of object scores (where object scores are defined as the centroid of those
quantifications which apply to the object). The general conclusion is (1) that
analysis of sets Pi tends to emphasize differences between infrequent categories,
compared to analysis of sets Piwi; (2) that the choice for Zt;ti=k may result
in  solutions where some of the k sets are dominating (with neglect of other
sets), that the choice for t;ti=1 makes those contributions more equal (but
with the risk that they are highly correlated), and that the choice for T;Ti=I

makes contributions more equal but at the same time counterbalances such

high intercorrelations.
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1. Formulation of the problem.
Data are given in a matrix X, with n rows (for objects) and as many

columns as there are variables. Given is that X is partitioned, column-wise,
in k sets: X= (X1,X2, .,Xk). The problem is to identify optimal relations
between the k sets. We assume here that columns of X have zero mean,

This problem can be approached by taking Tinear compounds Xivi (i=1,..,k)
with Vi a vector of weights. We then have to select the Vs in such a way that
relations between the k vectors Xivi are optimized. The criterion could be that
the sum of the correlations between all pairs should have a maximum. But there
are other possible criteria, as we shall see below.

In Van de Geer (1984) it was shown that there are a number of possible
choices.

(a) The first basic choice is whether or not it is allowed to replace each Xi

by an orthogonal and unit-normalized basis. Such a basis can be found by taking
the singular value decomposition X1=P5Q10%. This solution satisfies

P%P1=I

01Q;=1

Qi is a diagonal matrix, with positive diagonal elements, and with

dimension equal to the rank of Xi'

Then Pi is an orthogonal and unit-normalized basis of Xi‘ Obviously,
replacing each Xi by its basis Pi implies that all information about relations
between variables within a set, is thrown away.

The alternative is to repace Xi by Pigi’ in which case basic information abou
relations within sets is retained.

(b) The second basic choice is related to requirements imposed on weights.
Obviously, a. solution for a linear compound X. Vs will be equal to a solution
for t such that X v P t , Or such that X V. —P1Q1t1 The first

possib111ty is that t1 1s restr1cted by t1t1—1 The second possibility is

that this restriction is softened to t't=k (implying that the average value of
t%ti is equal to 1). The third possibility is the requirement T;Ti=I; it
means that successive solutions for t. are orthogonal (and unit-normalized).

Taken together, the two choices result in 6 different solutions. They are
shown in Table 1. For each solution, the criterion is that the trace of
T'P'PT or of T'@P'P@T must be maximized, where PT= zP T

Th}s~cr1ter1on ‘has™its own special 1nterpretat1on for ‘each cell of the
table. In cell [P,t't=k].the criterion implies that a sumvector Pt has
stationary value for its sum of squares, which comes to the same thing as
requiring that-the sum of the squared corre]ations between Pt and all Piti



This criterion has its own special interpretation for each of the six cells of
Table 1. In cell [P,t't=k] there will be stationary value for the sum of the squared
correlations between Pt and all columns of P, or between Pt and all columns Piti' In
cell [P,t%t.=1] there is stationary value for the squared sum of all correlations betwee
Pt and the vectors Piti' For this analysis it is not required that columns of
PT=ZPiTi form an orthogonal set. In cell [P,T%T1=I] the interpretation of the
stationary value remains the same, but under the condition that columns of PT
are orthogonal. 1In cell [P@,t't=k] it will be true that there is stationary value
for the amount of variance in P@ (or in X itself) "explained" by PPt. This comes to
the same thing as saying that there is stationary value for the sum of the squared
covariances between all columns of P@ (or of X) and the unit-normalized vector
Pwt(uk)-%. In cell [Pw,t;t1=1l the stationary value refers not to the sum of the
squared covariances, but to the squared sum of the covariances between all Piwiti
and the unit normalized vector Pﬂt(zu)—%. In cell [P@,T%Ti=I] there is the
additional requirement that columns of P@T form an orthogonal set.

2. Basic geometry.
The essentials of a geometric interpretation can be explained easiest byassumingthat
Xi has only two columns. Obviously, the two vectors X5 and Xio then are vectors locatec

in a plane.

Suppose we take compounds Xivi’ where v%vi=1. Vectors Xivi then will be Tocated
in the same plane as Xi‘ In addition, such vectors will appear as "radii" of an ellipse
passing through X34 and Xioe There will be two solutions for Vs such that the compounds
X. Vi and X Vio will correspond to the two principal axes of this ellipse. These
principal axes then also can be expressed as p1.1(z$1.1 and pi2¢12' Each other "radius" of
the ellipse can be expressed as a vector P, Q.t., with t't =1.

Assume now that we have two solutions t (1) and t. i(2) such that t! (1)t (2)° =0. The
geometric implication is that the tangential to the ellipse at P. ¢1 i(1) is parallel
to P; ¢1 i(2) " and vice versa: the tangential at P. ¢1 i(2) is parallel to Pi¢1t1(1).
In other words: tangentials circumscribe the ellipse as a parallelogram, with sides
parallel to P191T1

If we take a solution based on analysis of P, vectors Piti with t;ti=1 will
appear as radii of a circle. When T%Ti=I, the two radii will be orthogonal,
so that the tangentials surround the circle as a square.



3. Applications of the geometrical interpretation.

Results will be illustrated with an example, with k=3 sets, each with

m=2 variables. More details of this example will be given in the next
section.
(1) Analysis_of P with tit.=1. These results are shown in Figure 2. The
figure shows three ellipses; they are the projection of the circles defined
by Pi (i=1,2,3) on the plane of Pt(1) and Pt(z). The essential characteristic
of the figure is that the tangentials at the points Piti(1) are orthogonal to
Pt(1), and the tangentials at Piti(Z) orthogonal to Pt(z). The rationale is
quite simple: we want Pt(j) (j=1,2) to be as long as possible. On the other
hand Pt(j)=zP1ti(j), so that we also want the projection of Piti(j) on
Pt(j) to be as long as possible. The latter implies that the tangential at
Piti(j) must be orthogonal to Pt(j). In this way the tangentials circumscribe
each ellips in the form of a parallelogram, with sides ortogonal to PT.

Another characteristic of the figure is that the vectors PT are not
orthogonal to each other. A third characteristic is that vectors PiTi are
not orthogonal. The Tatter is shown best for P3T3, where the corresponding
ellipse is rather narrow, and where P3t3<1) is very close to P3t3(2).
(11) Analysis_of P_with TiT.=I.  This result is shown in Figure 3. The three
ellipses noy have about the same shape. Vectors Pt(1) and Pt(2) are orthogonal.
However, the price one must pay is that tangentials at Piti(j) no longer
are orthogonal to Pt(j). Tangentials circumscribe ellipses as parallelograms
which no longer have parallel sides. In stead, the tangentials are
only roughly orthogonal to Pt(1) or Pt(z), in the sense that the projections
of P1t1(1) on Pt(2) have zero average (and vice versa). A further
characteristic is that vectors PiTi are uncorrelated (geometrically this implies
that the tangential at Piti(1) is parallel to P1t1(2)’ and the tangential at
P1t1(2) parallel to P1t1(1).
(i11) Analysis of P with t't=k. Figure 1 shows this solution. Vectors

e Y .

Pt(1) and Pt(z) now are orthogonal, and tangentials at Piti(1) are

orthogonal to Pt(z), and vice versa. However, vectors Piti(j) will no

lTonger be located on the ellipses, since t;(j)tj(j)#1l The VECtoti on the
ellipses therefore are, in fact, the vectors Piti(')(t%(j)ti(j)) 2. We
therefore may interpret the values of (t%(j)ti(j)) as if they are weights: it
the value is larger than 1, the corresponding vector will be located outside
the ellipse, and if the value is smaller than 1, the vector is located in the
inside of the ellipse. For the example, these values are 1.08, 1.20, and

.64, respectively, for the first dimension; it shows that P2 plays the most

dominant role, whereas P3 is relatively neglected. For the second dimension the
weights are 1.17, .95, and .85.



In general, analysis of P does not pay any attention to the Tocation of the
principal components Pi’ These principal components are two orthogonal radii
of their circles, but for the analysis it does not matter at all where they
are located. It follows that solutions for Piti(j) could o& very well
be close to the second principal component of Pi' Such a result is illustrated
in Figure 1 for the solution of P2T2: both vectors are close to the second
principal component. This implies that the vectors P2t2(j) explain Tittle of the
variance of X2.

Analysis of P@ has the effect that the analysis 1is based on the
ellipses with the columns of Piwi as principal axis. Such ellipses project
on the plane of P@T again as ellipses, where, in general, the projection of
the first principal component p“;zS].1 will be longer than that of the
second principal component. As a result, solutions for PiwiTi will tend to be
Tocated closer to the projection of the first principal component.

For the example this result is illustrated in Table 2. This table gives
for the principal components the percentage of explained variance, averaged over
three sets. The result shows quite clearly that in analysis of P@ the
percentage explained variance for the first component becomes much larger than
the percentage explained for the second component, in comparison with
the corresponding analysis of P.

(i) Analysis of P@, t't=k. The result is shown in Figure 4. As in Figure 1,
tangential circumscribe the ellipses as rectangles, with sides orthogonal to

PT. For PZQZ the projected el]ipse is very narrow, with the further implication
that P2¢2t2(1) has almost perfect correlation with p2¢21,whereas P2¢2t2(2) has
aTmost perfect negative correlation with the first principal component.

Again, in the analysis the contributions of each set have differential
weight (t%(j)ti(j))é. For the first dimension these weights are 1.03. 1.28. and
.56, respectively, showing that PZ{Z}2 has dominant contribution, and P3¢3 is
relatively neglected. For the second dimension the weights are .95, .22, and
1.43, so that now P3w3 is dominant, and P2¢2 neglected.
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(11) Analysis_of P@, tit.=1. The result is given in Figure 5. Ellipses
are circumscribed by parallelograms with sides orthogonal to P@T. For the
example PWt(1) has quite large correlation (r=.72) with Pwt(z). The fact
that the solution for P2¢2T2 is very much dominated by the first

principal component, has already been mentioned above. The same is true, to
less extent, for P1¢1T1.

(i11) Analysis_of P@ with T:T.=I. As in Figure 3, ellipses are circumscribed

by tangential parallelograms of which the sides are only roughly orthogonal
to PAT. Also, as in Figure 3, the tangential at P.Q.t.(1) is parallel to

797
Piwiti(z) (and vice versa).
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4. Application to the analysis of nominal variables.

A variable is said to be nominal if it sorts objects into a discrete
number of categories which have no apriori quantification. Table 3 gives an
example, with three nominal variables, each with three categories, for n=15
objects.

The relation with analysis of k sets becomes visible by re-coding the
nominal data in the format of an indicator matrix G. Table 4 shows what
this means for the example. The indicator matrix has n=15 rows, and as many
columns (9) as there are different categories in all variables. In the
row for a particular object, an entry 1 is placed in the columns of the
categories which apply to the object, and an entry 0 otherwise.

Obviously, columns of G form k sets, where k is the number of nominal
variables. In the example, G can be partitioned into G=(G1,GZ,G3), with
three binary column vectors for each of the three sets.

We then may replace G by a matrix of deviations from column means. Call this
matrix X, then X is also partitioned into k sets: X=(X1,X2,X ). The
matrix Xi can be expressed as Xi=Gi-uu'Di/n, where u is a vector with all
elements equal to 1, and where Di is the diagonal matrix D1=G%Gi' Note that
elements of Di correspond to the marginal frequencies of the categories of
the ith nominal variable.

Rows of Xi will add up to 0, and it follows that Xi has rank mi-1, where

ms is the number of categories in variable i.

Given the matrix X as defined in section 4.1, procedures for analysis of
k sets can be applied to it. These procedures will be based on the
singular value decomposition X1=PiwiQ;, where Pi has m1—1 columns. In the
example, each Pi (i=1,2,3) will have two columns, and therefore each Piwi also
has two columns.

To illustrate, take the analysis based on P, with t't=k. This results
in solutions for Pt, where Pt has sum of squares equal to mu. We then
may re-normalize Pt such that after re-normalization the sum of squares
is equal to n (in other words, Pt is standardized to unit variance). For the
example this means that we should take Pt(n/ku)%. This result is called
variable by taking Piti(n/ku)é.k. This means that in Table 3 the
category labels are replaced by numerical values. It then follows that

object scores are the average of the category quantifications of categories
which apply to the object. The reason is that Pt=zPiti, so that Pt becomes
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the average of the values in columns Piti’k' For other procedures similar
adaptations must be made; they will be formulated in the discussion of these
various procedures, below. (Table 5)..

In general, however, it can be said that categories of the nominal
variables are quantified in such a way that after quantification the criterior
value for the solution is maximized. E.g., in the analysis of P with
t't=k, the solution for category quantification in the first dimension
will be such that this category quantification ensures largest possible
value of H(1): any other quantification would result in a lower value of

")



4.3 Numerical jillustration.

Figures 1-6 show for each of the six solutions the 15 points for objects, and
the 9 points for quantified categories. Table 5 shows how coordinates of these
points are defined for each solutiocn.

For all solutions it is true that object points have sum of squares equal to
n=15, both in the horizontal and the vertical direction, and that the sum of
cross-products is zero. Note that points for identical objects 1 4 7, or 6 9, or
8 10, do coincide. Note also that in each graph an object point is the centroid of
the categories which apply to the object. E.g., object 1 is plotted as the
centroid of categories a p u, object 2 is the centroid of b q v, etc.

The solution for P with t't=k is known as the HOMALS solution. This solution has the
special property that categories also could have been quantified by taking the
average of the object scores of objects in the category; such a quantification
would be strictly proportional to the quantification plotted in Figure 1. This
special property does not apply to the other five solutions.

A possible disadvantage of the HOMALS solution is that it tends to become
dominated by categories with low marginal frequency. This will be true for all
solutions based on analysis of P. Analysis of P@ tends to suppress the influence of
infrequent categories. This is related to the discussion in section 3.2, and
illustrated in Table 2. In fact, in an example with nominal variables, columns of Xi
have larger variance to the extent that the marginal frequency comes closer to .5,
whereas columns for categories with frequency close to 0 have small variance. The
first principal component p1.1¢1.1 therefore will be correlated more with columns
of Xi for categories with intermediate frequency than with columns for categories with
low frequency. This is illustrated in Table 6 in which the solutions for Piwi are
given. Clearly, p”¢11 contrasts category a with the other two categories, whereas
p12¢12 contrasts the two infrequent categories b and c. Also, p21¢21 makes a
contrast between the most frequent category p and the other two, whereas p22¢22
makes a contrast between q and r. Finally, p31¢31 gives the contrast between the
two most frequent categories v and u, whereas p32¢32 gives the contrast between the
infrequent category w and the other two. It follows directly that a solution
(as for P@) which gives more attention to first principal components, therefore
must be less dominated by differences between infrequent categories.

This can be seen in Figure 1, where categories b and c are far apart, whereas
in Figure 4 the distance between these categories is much smaller. Similarly for
categories q and r, or for the extreme position of category ﬁ in Figure 1.
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Similar changes are found when comparing figures 2 and 5. A comparison of
figures 3 and 6 shows that changes are much less drastic, but this was already
shown in Table 2.
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5. Conclusions.

5.1 Analysis_of P. Each set Xi is replaced by an orthogonal basis Pi’
The analysis focusses on correlations between sets, and ignores the
correlation structure within sets. With t't=k one obtains orthogonal
vectors Pt(j), butlthese vectors are weighted sums of compounds
Piti(j)(t%(j)ti(j)) 2. The effect can be that the solution is dominated
by only some of the sets, with neglect of other sets. With t%t1=1 the
vector Pt(j) is a direct sum of the compounds Pi(j)ti(j)' The contribution
of individual sets therefore becomes more balanced. On the other hand,
columns of PT are no longer orthogonal. With T;T1=I individual
contributions are even more balanced; vectors of PT are prthogonal, and,

in addition , vectors in PiTi are orthogonal.

5.2 Analysis of P@. These solutions do not ignore the covariance
structure within sets. The general effect will be that for good

solutions the contribution of the first principal component(s) of each
set will be increased, whereas the contribution of principal components

with small eigenvalue is decreased.

5.3 Geometry. Properties of the solutions can be described in terms of

orthogonality of tangentials (or tangenti&1 hyperplanes) at Piti(j) (or

Piﬁiti(j)) and vectors Pt(s) (or PQt(S)) (s#3).

5.4 Nominal_variables. The solutions can be applied to nominal variables
and then result in varieties of "non-linear" analysis. Analysis of P
with t't=k then becomes identical to a HOMALS analysis. Analysis of

P with T%Ti results in orthogonal category quantifications. In all
three procedures based on analysis of P the risk is that results are
dominated by categories with low marginal frequency. This effect is

counterbalanced in the procedures based on analysis of P@.
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TABLE 1

| - ] _ 1 -
t't=k titi_1 TiTi_I
1 - 1 - 1 -
t'tP'Pt=pk t'PfPt=Zui ‘ tr(T'P'PT)=tr(ESi)
1 — 1 — 1 -
t'9P'PPt=uk | t'PP'PPt=su. tr(T'gP*POT) =tr(zS,)
L

Table 1. Six solutions for relations among k sets of variables. Top line
in each cell gives the stationary equation; bottom 1ine defines
the criterion. In solutions with T;Ti=I there is the additional

requirement that zSi=w2 must be a diagonal matrix.



TABLE 2

1St princ.comp. an princ. comp.
P t't=k .377 545
P@ t't=k 731 156
P t%ti= .350 586
P@ t%ti= .687 177
P T;Ti= .470 453
P@ T;Ti= .544 375

Table 2. Percentage of explained variance of first and
second principal component, averaged over the three sets.



TABLE 3

variables
1 2 3
1 a p u
2 b q '
3 a r v
4 a p u
5 b p v
6 o p '
7 a p u
objects 8 a p v
9 o p Y
10 a p v
11 a q W
12 b r W
13 o p W
14 b q u
15 C r u

Table 3. Numerical example of three nominal variable with
three categories in each variable.
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TABLE 5.

object scores category quantifications
e 3 3
Hesk o Preg)(nskeggy) Pitig)(mkiugg))
L 13 3
PoonET PG () Piti(gk(n/mng ()
THT.=1 pTw'1n% P.T.w71kn5
11 11
Bk PO (k) P393ty (5) (kg ))*
PO tlt,=d P¢t(j)(n/2ui(j))% Piwiti(j)k(n/Zui(j))%
TIT.=1 ppTy T P.g.T.v 'kn?
R I . . . 1°1.1.

Table 5. Coordinates of object points and points for quantified
categories.



TABLE 6

P9, Py@,: P305
1 .65 0 .49 0 -.76 36
2 _'57 71 =73 71 64 15
3 65 0 73 -7 64 15
4 65 0 49 0 =76 36
5 -'57 71 149 0 64 15
6 _57 -7 .49 0 .64 15
7 65 0 149 0 .76 36
8 65 0 49 0 64 15
9 _57 =71 149 0 64 15
10 65 0 .49 0 64 15
1 65 0 .73 71 _24 -.96
12 -'57 71 S73 -7 _24 -.96
13 _57 .71 49 0 _24 -.96
14 .57 71 -3 71 -'76 36
15 _57  -.71 -73 -.71 -\76 136
#° 5.60  4.00 5.40  3.00 5.92  3.55

Table 6. Solution for P@.



FIGURE CAPTIONS

Figure 1. Solution for P with t't=k. El1lipses are drawn on scale 8/3. Of vectors
Pt(j) only the directions are indicated (not the proper length). Vectors
P.t.(j) are labelled as tij; they are connected by their corresponding points

on the Pi-ellipse by dotted 1ines. Objects are labelled with their number of
Table 3. Objects 1 4 7 are identical (label 1), 6 9 are identical (label 6) and
8 10 (label 8).

The essential geometrical property is that Pt(1) and Pt(z) are orthogonal, and

therefore that the ellipses are surrounded by tangential rectangles.

Figure_2. Solution for P with t%t1=1. Scale and labels as in Figure 1. The

essential property is that Pt(1) and Pt(z) are not orthogonal; ellipses are
circumscribed by tangential parallelograms.

Figure_3. Solution for P with T;Ti=I. Scale and labels as in Figure 1. Vectors
Pt(1) and Pt(z) are orthogonal (as in Figure 1), but tangential parallelograms no
lTonger are orthogonal to Pt(1) or Pt(z). Instead, the parallelogram for the
Pi-e111pse has sides parallel to Piti(1) or Piti(z)'

Figure 4. Solution for P@ with t't=k. Ellipses are drawn on scale 4/3. Vectors

P.O.t.,.
i717(]
components p].1¢1.1 and p1.2¢1.2 have label Pi and Pio- Geometrical properties are

) (or their corresponding point on the ellipse) have label tij' Principal

the same as in Figure 1. However, there is much less emphasis on the distance
between infrequent categories_g and c, or g and r, or u and w.

Figure 5. Solution for P@ with t%ti=1. Scale and Tlabels as in Figure 4. The
tangential parallelograms of P1¢1 and P2¢2 have been cut off arbitrarily at top
and bottom. Vectors p21¢21, P2w2t2(1), and P2w2t2(2) are so close together that

only one label (tz) has been used for all three.

Figure 6. Solution for P@ with T%Ti=I. Scale and labels as in Figure 4.
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