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Abstract

We propose a possible statistical model for both contextual analysis
and slopes-as-outcomes analysis. These techniques have been used in
multilevel analysis for quite some time, but a precise specification
of the regression models has not been given before. Following Tate
and Wongbudhit, we propose a random coefficient regression model,

and investigate its statistical properties in some detail. Various
estimation methods are reviewed, and applied to a Dutch school-career
example.
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1. INTRODUCTION

In a recent paper Tate and Wongbundhit (1983) have argued that random
coefficient regresssion models are more appropriate for multilevel
analysis in educational research than fixed coefficient models. We

briefly summarize their argument, which consists of four steps.

In the first place within-group regressions can reflect important

aspects of the multilevel mechanism. It is quite conceivable, for
instance, that in some schools the regression of success on intelligence
is steeper than in others, and that this steepness reflects policies,
strategies, or ideologies that differentiate schools. This first

step in the argument is also the starting point of the 'slopes as
outcomes' analyses used by Burstein and his associates, which will

be reviewed briefly below. The second step in the Tate-Wongbundhit
argument is, that we can expect a great deftd of variation in the
within-group regressions, not only because of the policies and strategies
mentioned above, but also because of a large number of differences between
groups which are more difficult to isolate. Thirdly it is common.practice
to use random variability ('disturbances' or 'errors') to 'explain'
variations that are not modelled explicitly. And, fourthly and finally,
working with incompletely specified models inevitably leads to a loss

of efficiency in the estimates. 'We agree with the argument that data

from many educational settings are generated by random coefficient processes.
Therefore, we also believe that statistical inference should be based
on the same kind of model.' (Tate and Wongbundhit, 1983, page 107).

We shall illustrate the argument of Tate and Wongbundhit by analyzing

a number of more specific models and techniques that have been proposed
in the multilevel literature, and that seem to require random coefficient
regession techniques. The first instance is the general contextual model
discussed most completely by Boyd and Iversen (1979, especially chapter
III). Boyd and Iversen systematically distinguish the single equation
approach to contextual analysis from the separate equations approach.

The separate equations approach is the more basic one. There are two

types of equations in the contextual model. The first one specifies

an individual-level within-group regression model, one for each separate
group. The second set of equations relates the within-group regression
coefficients to contextual variables describing the groups. These contextual
variables are often within-group averages of individual level variables,



but this is by no means necessary. We are not concdnhed here with general
theoretical and methodological aspects of the contextual model. These
aspects are reviewed admirably by Boyd and Iversen (1979) and by Blalock
(1984). We concentrate on the statistical aspects of the model, a subject
which is somewhat neglected. 'Unfortunately, Boyd and Iversen did not
consider the question of statistical inference.' (Tate and Wongbundhit,
1983, page 107).

There is one very basic problem with the separate equations approach.

This is the question what is exactly modelled in the second set of equations.
There are two possible answers, based on two different assumptions.

Either the regression coefficients in the within-group models are fixed
parameters, or they are random variables. If they are fixed parameters,

then they are estimated by ordinary within-group regggssion analysis.

The estimates of the within-group regression coefficients, which must

be distinguished from the regression coefficients themselves, are again
random variables. In the second modelling step, or in the second set

of equations, we can model the distribution of the estimates. But then

we must remember, of course, that this distribution is already determined

to a large extent by the assumptions and the calculations in th@ first
step. If we assume directly that the within-group regression coefficients
are random variables, then the above remains true. We still must distinguish
the regression coefficients from their estimates, where the notion of
'estimation’ ié¥g;tended to cover estimation of random variables. In

fact it is clear that fixed parameters are merely a 'degenerate' special
case of random coefficients. A basic problem with the contextual analysis
literature is that the choice between fixed and random coeffcient models

is never made explicit. Boyd and Iversen (1979, for instance section

3.2) write their equations as if they are thinking of random coefficient
models. Their later discussion of the disturbance terms in the single
equation approach (1979, page 55) also suggests this. But their estimation
procedure is ordinary unweighted least squares for both sets of coefficients,
which ignores the information provided by the random coefficient model.

A similar incomplete specification is apparent in a recent interesting
paper by Van den Eeden and Saris (1984). They analyze school-career

data collected in the Netherlands by a 'two-step' approach. The adjective
'two-step' has two different meanings. In the first place the model

is specified by two sets of equations, the first one within-schools at

the individual Tevel and the second one between-schools at the school-



level. But the approach is also called 'two-step', because the estimation
is done by ordinary least squares for both sets of equations separately.
In fact the most important methodological conclusion of Van den Eeden

and Saris is that their two-step procedure is preferable to a one-step
procedure which combines the equations into a single equation and then
estimates all parameters jointly by ordinary least squares. We shall
comment on this conclusion in-a later section of the paper, at this

point we merely remark that Van den Eeden and Saris also do not specify
if their within-group regression coefficients are random variables

of fixed constants. Or, to put it differently, they do not make explicit
assumptions about the behaviour of the disturbance terms in the between-
schools equation, and they act as if the usual linear model assumptions
are true at both stages. In fact they even use standard errors associated
with the usual linear model in the second step. We agree with Tate and
Wongbundhit (1983) that incomplete specification usually leads to loss

of efficiency. Moreover, in the case of Van den Eeden and Saris, use

of ordinary least squares standard errors in the second stage is not

only inefficient, it is in fact wrong. We shall illustrate this below,

by analyzing the same school career data in a different and theoretically

more satisfactory way.

For completeness we emphasize that Boyd and Iversen are certainly aware
of the problems associated with combining the two sets of equations

into a single one. In their appendix B (1979, pages 232-233) they discuss
a weighted regession procedﬂre for the second stage, which incorponikes
weights for the variances of the within-group regressions. Their discussion
suggests a fixed coefficient model, in which the second stage provides

a model for the estimates of the wiﬁhin-group regressions. In their
appendix C (1979, pages 234-236) they discuss conditions under which
separate equations and single equation ordinary least squares give

the same estimates. In practice both estimates will be quite different,
and Boyd and Iversen do not give explicit criteria which can be used

to choose between the two.

There is another class of multilevel models in which random coefficients
seen necessary. These are the 'slopes as outcomes' analyses of Burstein
and his associates. The most important references are Burstein (1976,
1980a, 1980b, 1981), Burstein and Linn (1976), Burstein, Linn, and
Capell (1978), Burstein and Miller (1981), and Burstein, Miller, and
Linn (1981). These papers concentrate on motivation and interpretation



of the results if within-group slopes are used in between-group regression
analysis. Again we are not concerned with the theoretical and methodological
reasons for adopting this approach, and with its usefulness in educational
contexts. For this we refer to the literature we cited. We restrg€t
ourselves to the statistical problems, which are, again, largely ignored
by others. The fact that there are some non-standard problems is
acknowledged by Burstein, Miller, and Linn (1981). 'The mathematical
properties of slopes as outcomes are not well understood. We are
essentially treating the within-group slopes as a random variable with

an unknown underlying distribution function. ... The criticism that
within-group slopes should not be treated as random variables is troubling,
but certainly not fatal. There are too many instances in behavioural
reserach where sensible analytical work has been conducted without mathematical
confirmation of the appropriateness of the distributional assumptions

in the measurement of a critical variable.' (1981, page 19). It seems

to us that the last part of the quotation is unduly pessimistic. If

we make a complete specification of the model, along the lines already
indicated above, thenthe problems with random or fixed coefficients

merely become questions of correct or incorrect specification which

can, at least in principle, be investigated by standard statistical
methods.

It is somewhat disappointing that Tate and Wongbundhit (1983), who seem
to have a clear understanding of the problems involved, merely contribute
a Monte Carlo study to show that some techniques can be misleading if

a random coefficient model is true. The same thing is true for Burstein,
Linn, and Capell (1978), who argue quite convincingly for the importance
of asgaming heterogeneous within-group slopes, but then illustrate their
point by a (very) small scale Monte Carlo study. This is all quite
unnecessary, because in the situations studied by these authors analytical
results can easily be derived. We must emphasize, however, that the
models studied by Tate and Wongbundhit (1983) and by Burstein, Linn,

and Capell (1978) are more gepgral than the models we intend to discuss.
OQur models have random coefficients but fixed regressors. The more

general models have both random coefficients and random regressors.

Of course the additional variation in the regressors introduces

additional complications, that we do not want to go into in this paper.

We do not want to belittle the distinction, however. It is quite important,
because random regressor models seem more natural in many situations

in educational research. The more general class of models also makes



it possible to fit in multilevel analysis more smoothly into standard
structural equation modelling practice. We hope to come back to this

more general class of models at a later occasion.

In the next section of the paper we shall introduce a fairly general
random coefficient regres§gon model, with fixed regressors, which can

be used in multilevel analysis to unify and extent many results obtained
by contextual analysis or 'slopes as outcomes' approaches. Section 3
briefly reviews the history of this model, and relates it to other models
that have been proposed before, mainly in econometrics. Section 4
discusses ordinary least squares estimation, and compare§the 'one-step'
and 'two-step' methods more in detail. In section 5 we introduce a class
of weighted least squares estimates, and in section 6 the more complicated
maximum likelihood methods are derived and dis¢issed. The Dutch school-
career data, analyzed earlier by Van den Eeden and Saris, are used to
illustrate the various techniques in section 7. Section 8 concludes.
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2. MODEL

The model is specified in two sets of equations, one within-groups,
and one between-groups. We suppose there are m groups, nj observations
in group j, and p within-group fixed regressors. The measurements for group J
on the p regressors are collected in the nj x p fixed matrix Xj’ the
measurements on the dependent variable in the nj—element vector lﬁ'
In this paper we use the convention to underline random variables
(Hemelrijk, 1966). In this context, in which to be fixed or to be
sSucdh a

random is the question, 4 convention is especially convenient.
The model for group j is

Y. = XiB: * g5, (1)

Here §j is the p-vector of within-group regression coefficients, and
€. 1s the nj-vector of disturbances. We assume, for the disturbances,

E(e:) = 0, (2a)

E(Ej_s_:_j) = o%l. (2b)

Thus we have a standard linear model for each group, except for the

fact that the Ej are supposed to be random vectors. Their properties

are specified in the next set of equations. The m groups are characterized
by g regressors, with values in the m x g matrix Z. If we collect

the mp random variables B (j=1,....m and s=1,...,p) in the random m x p

J
matrix B, then the second stage model is

B =170+ A, (3)

Here © is a q x p matrix of fixed regression coefficients, and A is
an m x p matrix of random disturbances. It is sometimes more convenient
to write (3) as

. =0'z. + 6.,
55 25T 5 (4)
where Zj contains the q elements of row j of Z, and id contains the
p elements of row j of A. In addition we assume that
E(84) = 0, (52)
E(Ejéi) =0 ifj=2, (5b)
E(6.8!) = Q, 5
(8,81 (5¢)
E(QJE') = 0. (5d)

Equations (1)-(5) define our basic model. The parameters are the matrices



2 and 0 and the m values of o%. For the model to make sense the matri
Q should be positive semi-definite.

The within-group and between-group components of the model can be
combined into a single individual-level model. Substituting (4) in
(1) gives

= X.0' + .
ST A TR
with
= X.6. +
Vi = A5ty
Thus
E(v.) = 0,
(13)
E(v,v,) = 0 if § = 4,
E(v.v') = X.QX' + g21I.
(9j95) = Xj0%;5 + 03]

Model (6)-(8) is, in a sense, the reduced form of model (1)-(5). The
unobservable variables EJ are eliminated from the model, and we find
the fixed coefficient regression model (6), with correlated errors
according to (8c). We can finally eliminate the disturbances, and wri
the model entirely in terms of observables. For this purpose it is
convenient to define

Ha

X.0'z.,
j =40z

J
]
. QX. + g21.
g = Kk oS
Then our model says that

E(y:}) = us,

(g%) M

E(zjzﬁ) =0 if j =2,
E(y.yi) = €

L35 =J°

For some purposes we assume, in addition, that the ld are jointly
multivariate normal, but we do not need this assumption for most of
our discussion. We shall indicate clearly where we do make it.

It is also clear that the fixed coefficient model is the special

case in which Ao = 0, i.e. in which @ = 0 and Ej = o%l. In the

'slopes as outcomes' approach, and also in the usual contextual
models, Xj has only two columns of which the first one is identically

equal to +1. The two elements of §j are the (random) intercept and

X

te

(11a)
(11b)
(11c)
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the (random) slope. If we want to include mixed models, in which for instance
intercepts are fixed but slopes are random, then this can be done by requiring
certain elements of © and/or © to be zero. We shall consider such restricted
versions of our general model to be addiﬁbna1 specifications, which

can be tested within our general model. Another additional specification,
which is also of some importance, is that the cg are the same. We

have already indicated that a basic limitation of our model is that

all regressors (both Z and the Xj) are fixed. Another Timitation is

that we only deal with a single dependent variable y. This last restriction
of generality could easily be removed, but this would merely complicate

the notation without giving essentially different results from the

univariate case.

The interpretation of our model in the multi-level context is clear,
because it is a straightforward generalization of the general contextual
model of Boyd and Iversen (1979), which it merely makes more explicit
and more precise. In the same way it generalizes the 'slopes as outcomes'

1 ]

approach, showing in what sense regression coefficients 'are' random
variables. We shall see below, that our estimation procedures generalize
the one-step and two-step procedures of Boyd and Iversen (1979) and

Van den Eeden and Saris (1984). In fact they generalize them, correct
them where necessary, and put them on a more solid statistical basis.
But first we shall indicate that our model is far from new, and has

been studied in great detail already in the econometric and statistical

literature.



3. SOME HISTORY

Random coefficient models, or more generally variable coefficient models,
have a long history in econometrics. There was pioneering work by Rubin,
Klein, Wald, and Theil in the late forties and early fifties, but this
had 1little practical impact and was ignored for some time. More comprehensive
papers, oriented towards practical applications, were written in the

late sixties by Rao, Fisk, Hildreth and Houk, and Swamy. The pre-1970
literature is reviewed almost completely in the monograph by Swamy
(1971). In the seventies a substantial body of theory was developed,

and a number of useful review papers appeared. We mention Rosenberg
(1973), Spjgtvoll (1977), Mundlak (1978). Chapter 17 in the book by
Maddala (1977), and the very recent chapter by Chow (1984) in the
Handbook of Econometrics are also very useful. Annotated bibliographies
have been published by Johnson (1977, 1980).

Although these econometric papers often discuss models which are more
general than our (1)-(5) in some respects, they are usually less general
in one important respect. In the second stage specification (4) most
econometric models use g = 1 and zJ.1 =1 for all j. This means that

6 + Qd’ and thus there effectively

we can rewrite (4) more simply as gj
is no second stage model of independent interest. This makes the standard
random coefficient models as such quite useless for multilevel research,
although there are some exceptions. The first exception is Hanushek

(1974). He only considers the case p = 1, but for this case he presents

a two-stage model which is very similar to our model. Unfortunately

Hanushek does not distinguish random and fixed variables clearly in

his paper, and as a consequence the statistical analysis of his model

is confused. Another two-stage model has been proposed by Amemiya

(1978), in the context of pooling cross-section and time-series data.

The model assume lj = XJEJ + EJ’ as we do, but the second-stage model

is By = Zje + éd’ which is quite different. The difference arises,

of course, because the models are designed for different types of applications.
The assumptions on the distributions of the disturbances used by Amemiya

are, again, different from our assumptions. A two-stage model very

similar to Amemiya's has been studied very recently by Pfefferman

(1984). Pfefferman works in the Gauss-Markov framework, and supposes

that the dispersions of the disturbances are essentially known.



The fact that the random coefficient models in econometrics are either
not specific enough, or just a little bit different, need not bother

us at all. The estimators that have been propsed in the literature

can be adapted without too much trouble to our two-stage multilevel
model, and this is exactly what we shall do in the sequel. Moreover
there are many results in statistics that deal with general mixed

linear models. They can be used for our model too. And finally our
two-stage models are closely related to Bayesian and empirical Bayes
methods for the linear model. These results are discussed most completely
in Lindley and Smith (1972), and in the contributions of the discussants
of that paper.

There are also two important developments in the econometric random
coefficient literature that we have not incorpormtéd in our model, although
they could very well be useful in multilevel research. The first one,
already discussed in connection with Burstein, Linn, and Capell (1978),
is the use 6§ random regressors. In a basic paper Mundlak (1978)
discusses random regressor-random coefficient models in which there

may be 'transmitted errors', i.e. correlations between coefficients

and independent random variables. Our second omission, somewhat less
serious perhaps, is the modelling of the first-level error variances

as random variables as well. This could be useful in 'residual-as-
outcome' research. Models which allow for random variances are discussed
by Aragon (1985). Both extensions of our basic model would have led

us into many complications, and into largely uncharted territory.



4. LEAST SQUARES ESTIMATION

In this section we discuss various aspects of least squares estimation
in our model (5). The first aspect is 'estimation' of the EJ' We must
realize, of course, that we estimate a random variable here, and not

a fixed constant. Nevertheless the notions of bias and variance apply.
to estimation of random variables as well. Gauss-Markov theory for
random coefficient models was developed by Rao (19654, compare also
section 4a.11 of Rao (1965b), by Swamy (1970, 1971), and by Pfefferman

(1984). The relevant result for our model is that the minimum variance
-1

unbiased linear estimate of BJ is b = (XJXJ) X! Y- The expectation
o, ” -1
fb. E(b. 0'z., Q + CIfr. = y. .
0 -bJ is Q,J) zJ and its var1ance is OJ(XJXJ) 1 rﬂ lﬂ
ijj is the residual, then E(fj) = 0, and
-1

E{r.r! I - X X XY, 12

(ryrs) = J( (X; )" 3) ) (12)
It foll 'r.) = o¢(n. - p), 2 = i

t follows that E(rﬂrﬂ) oJ(nJ_ p), and thus o3 rJrJ/( i - p) is

unbiased for o?. This is the first step of our estimation process, which
gives us unbiased estimates of the random variables Ej and the error

variances o%.

In the second step we compute a preliminary estimate of ©. This is
done by collecting the B. in an m x p matrix é. This matrix has
expected value 76, and thus (Z'Z)_IZ'é is unbiased for ©. This is
the usual two-step estimate computed in contextual analysis. Our
second step ends with the computation of an estimate for Q. This
requires some thinking, because the unbiased estimates developed in
Rao (1965a) and Swamy (1970) will not work for our Tode1. They are

based on the econometric one-step model in which E(bJ) = E(B ) =6

~J

for all j. But if we compute the matrix of residuals B - 7o,
and define ¢ = I - Z(z'Z)'lz', then
E é'@g = (m - q)n -1
(B'eB) = (m - q) 21 65505 0X3%5) 7 (13)
It follows that, using ¢ ij for the d1agona1 elements of @,
~ 1 1
£ =(m - B @B - 2

(m - q)™" ¢ g 655080000 (14)

is unbiased. Thus we can est1mate the variance of the dispersion on

both Tevels from the least squares residuals. It is somewhat unfortunate
that estimate (14) may not be positive semi-definite. Compare the discussion
in Swamy (1971, page 107-111).



After two steps we have unbiased estimates of all parameters. We cont¢lude

this section bq considering an alternative way of computing Téast‘squares estimates of
0. For this purpose it is convenient to write out model in a more compact

form. We define an n x pq matrix U in the following.way. U consists

of matrices Ujr’ with j=1,...,m and r=1,...,q. Each Ujr is nj X p. The

Ujr with the same first index are next to each other in U, and the

Ujr

We also string out 6 to a pq element vector 6, by placing the q rows

with the same second index are below each other, We have Ujr = zerj.
of © on top of each other in a single column. The y; are collected in
an n-vector y, and the Ej in an n-vector v. Then (6) becomes

Yy = Us + v, (15)

and (8) can be written simply as
E(v) = 0, (16a)
E(v') = V. (16b)

Here V is n x n and block-diagonal, with the Vj = XjQXj + o%I as
diagonal blocks. It is possible to show that the two-step least
squares estimate 5 developed above is of the form 5 = U-X} where

U” is a generalized inverse of U that fully utilizes its block structure.
As Boyd and Iversen have pointed out (1979, page 53-55) it is also
possible to study the single-step (or single-equation) estimate of

6. In our notation this is 6 = (U'U)_1U{l = fo, with UT the Moore-
Penrose inverse of U. Observe that we use the same symbol for the
single-equation estimate, although it generally differs from the
separate equation estimate (Boyd and Iversen, 1979, appendix C). It
is also unbiased, but it has some disadvantages. We must invert

a much larger matrix, which could very well be ill-conditioned,

and we do not get auxilary results which make it possible to estimate
the remaining parameters of the model. Thus separate equations
estimates seem preferable to single equation estimates. The same
conclusion is reached by Van den Eeden and Saris (1984, page 176-178),
although their arguments are quite different. They also point to
multicollinearity of single equation estimates, but they point out

in addition that separate equations estimates give results which are
easier to interpret. We agree with this evaluation. We do not agree
with their argument that separate equations estimates are bothered
less by non-homogeneous variance of the disturbances. We have shown



above that the Bj of the separate equations procedure are non-homogeneous

as well. Thus using ordinary least squares as both Boyd and Iversen

and Van den Eeden and Saris do is suboptimal in terms of variance .

Moreover computing standard errors of the estimated second stage regressions
by convential formulae, as Van den Eeden and Saris do, is incorrect.

It is also not correct, as Van den Eeden and Saris suggest, that the

single equation procedure leads to biased estimates. Because the
disturbances have zero expectation, unbiasedness is guaranteed. The
difference is mainly one of precision, computational ease, and
interpretability.

Tate and Wongbundhit (1983) also reach the conclusion that the procedures
they have compared (single equation, separate equations, and mixed)

all produce unbiased estimates. It is somewhat peculiar to use a Monte
Carlo study to confirm this. If the theory directly shows unbiasedness,
and a Monte Carlo study does not confirm this, then the result merely
indicates that either computational errors have been made or the random
number generator did not work properly. In Tate and Wongbundhit no bias
was found, so their random number generator worked correctly. There

are some curious passages in their paper on 'actual' and ‘adjusted’
separate equations procedures, with the 'actual' procedure being

badly biased. Since the estimates must be unbiased, by our results
above, we conjecture that Tate and Wongbundhit have made a systematic
error in their computations. In their basic tables III and IV the‘r
compare computed standard errors over Monte Carlo replications with
expected values of the estimate ordinary least squares standard errors.
The actual SE's are interesting, although they indicate very little
difference between the procedures. The apparent SE's are not very
interesting, because they are all theoretically in error. There seems
to be little point in computing quantities that are known to be

wrong. As we have indicated above Tate and Wongbundhit could have
computed the theoretical expected values and dispersions of their
estimates very easily, given the parameter values in table I. The

trip to Monte Carlo was entirely unnecessary and, in fact, a bit
misleading. It must be emphasized that in the random coefficient-
random regressor model of Tate and Wongbundhit the regressors were
independent of the coefficients. Thus there are no 'transmitted errors'
in the sense of Mundlak (1978), and the model is rather close to a fixed

regressor model.



5. WEIGHTED LEAST SQUARES

In the previous section we have discussed both separate equations and
single equation least squares methods. We have seen that the single
equation method has Tittle to recommend it, and that the separate
equations method is preferable from a computational and interpretational
point of view. In this section, and in the next section, we shall develop
procedures which are more satisfactory from a statistical point of view,
and that maintain the interpretational advantages of the separate

equations method.

From (15) and (16) we know, using the Gauss-Markov theorem, that the
best Tinear unbiased estimate of 6 is given by

o = (Uvly)tuyly, (17)
This result, as such, is quite useless, because V is generally unknown.
It has been suggested by Swamy (1970, 1971) to substitute the estimates
0% and 2 computed in the previous section in the.definition of V. This
gives an estimated V. We then compute

o = (u'viu)yluvly, (18)

This is, of course, a natural idea. Because estimates atkno longer linear
in the observations the simple calculus of bias does not apply any more,
and we have to resort to asymptotic methods to evaluate our estimates.
Before we do this, we first simplify the expression (18) for the weighted
least squares estimates.

Remember that V is the direct sum of m matrices V. = XjQ Xj + 031. Thus

- _ J

v 1 is the direct sum of m matrices le. But (Swamy, 1971, page 101)
-1 -2 -1 -1 -1,-1 -1

V." = g.7(I ~ X.(X'X. XLY + XL (XX, Q + g2(X'X. XX, XL, 19
J 0J ( J(XJ J) J) J( JXJ) t OJ( J J) P J J) J (19)

The matrix u'v'lv can be thought of as being build up from q2 matrices
of dimension p x p. Submatrix (U'V_lU)Y‘S has the form

wly - 2(yry 1-1p-1
(u'v U)rs = jzl erzjs{ﬂ + oj(Xij) P, (20a)
and subvector (U'V-lz)r has the form
-1 i ) 1,-17
u'v = {9+ o2(XIX.) T b 20b
W)= 3 25w o) (200)

This can be written more elegantly by using Kronecker products. If



wj =0+ og(xjxj)'l, and W is the direct sum of the wj (i.e. the matrix
with the wj as diagonal blocks, and zero everywhere else), then we can
rewrite (17) as

o={(18z)wlrez)rrez)wl, (21)

with 8 the Kronecker product. Of course (18) can be written in exactly
the same way, with W substituted for W. We can also derive (21) immediately
from the fact that b, interpreted as a vector of length mp, satisfies

E(b) = (I 8 )0, (22a)
V(b) = W. (22b)

These results were already derived, in a slightly different notation,
in section 4. A further relation with section 4 becomes apparent when

we write the separate eqations unweighted least squares estimate as
6=1{(182)(1812)1182)%. (23)

Comparing (21) and (23) suggests that perhaps the separate equations
procedure is closer to the optimal weighted procedure than the single
equation least squares method, which cannot be written in a comparable
form. The optimal procedurg is, in a sense, also a two-step procedure,

because it first computes b and the regresses this on I 8 Z.

Again we emphasize that the development above generalizes that of Rao,

Swamy, and others, because they only study the simple case in which

the design matrix Z consists of a single column of ones. Then (21),

for instance, simplifies to

o) whl § s, (24)
j=1 9 PE R

which shows that in this case 5 is a 'matrix-weighted average' of the

Bj' The asymptotics for studying 5 has also been worked out only for

this interesting, but highly restricted special case.

A careful study in the asymptotics of weighted least squares for the
restricted model has been published by Johansen (1982, compare

also 1984, chapter IV). We shall not adapt all his results, but merely
discuss his improvement of an earlier result of Swamy (1970). This
assumes, in the original form, that both m and the nj tend to infinity.
The matrices nfl XiX. and m_lz'Z also tend to limits. Let C be the limit
of m_lz'Z. The% Swgm;'s result, translated to our context, says that
m%(g - 9) is asymptotically normal with mean zero and dispersion ¢! 8 Q.

(2?7



Johansen (1982) improves the conditions under which the theorem holds,

but also points out that the result may not be very satisfactory in

some situations. In fact under Swamy's conditions the weighted least
squares estimate has the same asymptotic distribution as the unweighted
separate equations estimate, and thus (asymptotically at least) there was
no reason to weight in the first place. Johansen proves a much more general'
result, which allows for an asymptotic effect of the weights. The result
depends critically, however, on assume Gaussian disturbances, and it is not
very easy to apply. Thus we do not discuss it in detail, and we do not

try to extend it to our multilevel model, although this can in principle

be done.

If we summarize the developments in this chapter we think that the weighted
estimate of will generally improve upon the unweighted estimate, although
this is by no means a certainty. Weighting will introduce some bias in

small samples, with a small number of groups, but will presumably improve

the precision. The asymptotic behaviour of weighted and unweighted estimates,
for a large number of groups, depends on the relative speed with which

m and the nj tend to their limits. It seems clear that what we need

is expansions, not limit theorems, to make more definite statements.



6. MAXIMUM LIKELIHOOD

Maximum 1ikelihood estimation methods for mixed analysis of variance
models were first discussed systematically by Hartley and Rao (1967).
Recent state-of-the-art reviews are by Harville (1977) and Thomson
(1980). Compare also Rao and Kleffe (1980). Recent computational
developments are often based on the EM-algorithm of Dempster, Laird,
and Rubin (1977). Applications of this algorithm to various classes
of mixed ANOVA problems are outlined in Dempster, Rubin, and
Tsutakawa (1981), Rubin and Szatrowski (1982), Laird and Ware (1982),
and Adrade and Helms (1984). We have computed maximum 1ikelihood
estimates for our model with a special version of the EM-algorithm,
but we shall not discuss it in detail because we have strong reservations
about its computational efficiency. Alternative estimates for the
dispersions of the residuals, at both stages, could be based on

Rao's MINQUE theory, which is reviewed by Rao (1979), Kleffe (1980),
Rao and Kleffe (1980). We merely note this here, we do not apply
MINQUE to our random coefficient model. For the possibilities we
refer to the dissertations of Streitberg (1977) and Infante (1978).

We have seen in the previous two sections that the most natural
unweighted least squares method, and the weighted least squares
method both worked in two computational steps. In the first step
within-class regressions were computed by ordinary least squares,
together with the within class residuals. In the second step the
within-class regressions were used as dependent variables for the
between-class analysis. This is an important property, because it
implies that in the second step we do not work with the original
lj and Xj any more, but with much smaller aggregations. This makes
computation in the second step relatively cheap. In this section
we show that a similar aggregation mechanism works in the case

of maximum likelihooc estimation. Although this method will generally
be much more complicated than the least squares methods, it does
share this basic simplifying property with them.

For the method of maximum likelihood to apply, we must make explicit
distributional assumptions. Thus we assume multivariate normality
here. We empfhasize, however, that the estimates also make sense

if multinormality is not satisfied. In that case they are 'quasi-



maximum-1ikelihood', but they may still be quite good. The form
of the log-likelihood function follows directly from (9)(10)(11),
together with multivariate normality. We ignore some irrelevant
constants, and we conclude that we must minimize the function
m
1
(

L(o,2,z) = ) 1In det(xjssz'. + 021) + (lj - XJ.OZ.)'(X.QX'. + 021)"

y: - X,0z.).
321 ] 3PV T

J J J

We now need some simplifications to get the order of the matrices
down to the aggregated level. The first simplification results from
formula (19). It follows from (19) that
-1
(

{(v. = X.0z.)'"(X.QX' + g21 . - X.0z.) =
(yy = Xj0z5) " (XgaKy + o31) “(y; - X;025)

(n, - p)5§/c§ ¥ (Bj - 02;)" (@ + cg(x5xj)‘1)‘1(5j - 07,). (26)

This brings the order of the matrices down from nj to p, which is
of course a large gain. It also shows how the first stage within-
class regression statistics are used. For the log-determinant in
(25) we use the result

-1
1 QXY+ g21) = 'X.) + {n. - 2 + + o2 (X!X. .
n det(XJQXJ oJI) In det (XJXJ) (n; p) In o2 In det(Q cJ( ; J) )

Again this is highly satisfactory, for the same reasons. If we combine
(25) and (27) we see that we must minimize the sum of m terms of the form

- q
.- 1 2+ 52/52) + 1 t(o + g2 (X'X. +

(nJ- p)(In o5 OJ/GJ) : di EQ cJ(XJXJ) )

+ .- e + o2 (XX )T .- ).
(bJ OzJ) Q oJ(XJXJ) ) (bJ OzJ) (28)

For fixed values of the dispersion parameters Gg and QL the optimal

© is computed easily by (21). Computation of the optimal dispersion
parameters is a bit more complicated, and we do not have a completely
satisfactory algorithm yet. The estimates used in the example in the
next section we computed by a version of the EM-method, but this
turned out to be very expensive indeed.

The asymptotic properties of maximum likelihood estimates in mixed
analysis of variance situations, which include our random coefficient
model as a special case, have been investigated most thoroughly by
Miller (1977). He proves consistency, asymptotic normality and
efficiency of the maximum likelihood estimates by using an increasing
sequence of designs (bothe the number of schools and the number

of pupils in the schools tend to infinity). As we have already

indicated in the discussion of the weighted least squares estimates

it is not entirely clear which particular form of asymptotics we

need in multilevel situations. Most of the results seem a bit contrived,



and it is probably safe practice to use Monte Carlo methods next
to asymptotic results as long as satisfactory expansions are

not available. Of course there is no need to use Monte Carlo

if exact results are available, as in the one-step and two-step
ordinary least squares case with fixed regressoks.



7. A SCHOOL CAREER EXAMPLE

We illustrate some aspects of the techniques developed in this paper
by analyzing the GALO-data, described by Peschar (1975), and analyzed
previously with multilevel analysis by Van den Eeden and Saris (1984)
and Dronkers and Schijf (1984). The GALO-data contain information
about primary school leavers in the city of Groningen during 1959

and 1960. Following Dronkers and Schijf, we selected 30 schools

which had pupils in both the 1959 and the 1960 cohort. For each

pupil the individual-level independent variables we used were

sex, IQ, and occupational level of the father. The individual-Tlevel
dependent variable is teachers advice on secondary education. Thus
our example had p = 4 (constant term, SEX, IQ, SES) and m = 60 (30
schools in 2 cohorts). The total number of pupils was 2058, and on

the average there are approximately 35 pupils in each school-year
combination (the actual nj varied between 15 and 68). IQ was coded
as a ‘continuous' variable, it had values between 58 and 148.
fathers occupation had six possible values, and teachers advice

had seven. Optimal scaling techniques have indicated that integer
scoring of the categories leads to regressions which do not deviate
too much from linearity. Thus we have treated occupation and advice
as numerical variables, although this is clearly not the most
rational way to proceed. For more information on this topic we refer
to Meester and De Leeuw (1983). They perform the optimal scalings
and analyse the GALO-data by techniques appropriate for categorical
variables. Their analysis is single-level, because they aggregate
over schools and cohorts first. We complete our description of the
data by describing the independent variables for the school-level
analysis. We used the fact that the 30 schools were situated in

10 neighborhoods. This was coded by using 10 dummy variables. The
year (1959 or 1960) was used as the additional group-level variable,
thus q = 11. Our choice of variables differs considerably from that
of Van den Eeden and Saris, who use p = q = 2, and have IQ and
average IQ as only predictors.

Qur first ana]ys1s step is to perform the 60 within-class regressions,
which estimate b and 6’z A1l regressions were done in raw score

form. There is an enormous variation both in the regression coefficients
and in the residual variances, and the second step in the analysis

is certainly needed to model at least some of this variation.We



intend to publish interpretational details elsewhere. It suffices

to say here, that advice was somewhat higher in the second cohort,
that SEX and SES were somewhat less important in the second cohort,
that intelligence was a very predominant factor in forming advice

and did not vary much in importance over the neighborhoods or years.
Neighborhood of a school did not predict the regression coefficient

of SEX or SES in the individual equations very well, the corresponding
elements of © did not deviate much from zero. As a general rule

the results of the second-stage analysis were difficult to relate

to neighborhood-characteristics such as quality of housing, percentage
of manual workers, and average income. Of course this may be due

to contamination with the individual variable SES.

In this paper we are more interested, however, in some technical
results. We have computed both one-step and two-step ordinary least
squares estimates of ©, a matrix which contains pq = 44 elements

in this example. The most interesting result is, perhaps, that the
correlation between the two matrices of estimates is .9978. Deviations
are usually very small, and impossible to relate to external information.
For all practical purposes the two sets of estimates are the same.

If we try to estimate the standard errors of the two sets of estimates
we do find some systematic differences. Two-step unweighted least
squares is about 5 % more efficient that one-step. In order to

compute these standard errors we must have estimates of Q and o%,

of course. They were computed by using (12) and (14). We can use

the same estimates of the dispersions to compute the weighted least
squares estimates. We find that weighted least squares estimates

of @ correlate .9991 with two-step unweighted least squares estimates,
and are 10% more efficient. Again the second stage regression coefficients
cannot be distinguished from the earlier solutions, but there is
slight gain in precision indicated. It is not directly clear that

the extra computation is worth its while. We have also computed

the maximum Tikelihood estimates by our ad-hoc EM-algorithm. They
correlate .9999 with the weighted least squares estimates. Of

course the maximum 1ikelihood method also gives us estimates

of the dispersions. We first compare the estimates of 0§ with

those computed from the least squares residuals. The maximum
likelihood estimates are, as a rule, a b1t smaller. But not much,
because the average of the 60 ratios oML/oLS is .9932. Again the
differences are very small, and insignificant for interpretational



purposes. It is not true that everything is the same for the two
solutions, however. The log-likelihood function decreases from

1700 to 1500 in about 10 iteration cycles, which is a considerable
improvement from least squares to maximum likelihood. The estimate

of Q changes a great deal. We have compute the eigenvalues of &&&éLS’
and they are 3.26, 2.33, 1.01, and -0.22. This shows that the least
squares estimate has a small negative eigenvalue, and that it is much
larger than the maximum likelihood estimate in some directions. This
instability of @ is the only possible reason why one should want to
do maximum likelihood in this example, the other parameters are
almost perfectly stable with respect to estimation methods choice.
Because the maximum likelihood method, as currently implemented,

is about 50 times as expensive for this example, we think that the
additional computation was not worthwhile. Of course this may be

due to a peculiarity of this example, and the conclusion certainly
depends on the algorithm that is used. On the whole we think that

our analysis of the GALO-example shows that combining the two-step
unweighted least squares method with the weighted least squares method
is by far the best overall method. Because the weighted least squares
method needs the statistics computed in the unweighted analysis they
combine very naturally. In fact they can be interpreted as the first
two steps in an iterative procedure, in which the residuals from step
k are used to improve the variance estimates, which are then used

to define new weights for step k + 1. Similar iterative estimation
methods are discussed, for example, by Streitberg (1977), who relates
them to maximum likelihood and MINQUE theory.



8. CONCLUSIONS AND RECOMMENDATIONS

Our first, and perhaps most important, recommendation is that if one
uses contextual analysis, or 'slopes-as-outcomes' analysis, then one
should try to specify the statistical model as completely as possible.
This does not necessarily mean that one must adopt the specification
we have investigated here, there are indeed many other possibilities.
In fact it seems to us that our model, although it is certainly a
step ahead, is not quite general enough. It must be generalized in
such a way that it can deal with recursive causal models, in which
there are several dependent variables and in which the regressors
are random. Moreover for many school-career analysis situations it
must have provisions for incorporating categorical variables. These
seem to be the developments that are needed from the modelling point

of view.

From the algorithmic point of view we have seen that a better method
to compute maximum likelihood estimates is certainly needed. Otherwise
the (possible) statistical advantages of the method will never be
Targe enough to offset the compuattional disadvantages, and that would
be a pity. Computation of weighted and unweighted least squares
estimates is simple enough, although the simplicity vanishes rapidly
if we generalize our fixed regressor model in the way indicated above.
In the fixed regressor model there seem to be no reasons why one would

want to use the one-step method.

In a statistical sense our methods are still far from complete. If

we assume multivariate normality, we can derive the exact sampling
distribution of the unweighted least squares estimates. But, of course,
there is hardly any situation in educational research in which the
assumption of multivariate normality applies. If we drop it, we have

to use asymptotic results. It is not clear yet, what the precise
properties of weighted least squares and maximum likelihood estimates
are, even asymptotically. This must be investigated in the future.
Another possibility, that we have not mentioned at all so far, is that
tests of hypotheses can be carried out in various ways. In our model

we can be interested in the hypotheses that @ = 0, for instance, or
that the 03 are equal, that some rows of © are zero, and so on. Because
we have concentrated on estimation, and not on testing and interpretation,
we have developed these possibilities, but they seem indispensable for

a more satisfactory data analysis.



Although a lot of work remains to be done, our most important conclusion
is that the fixed-regressor random-coefficient model we have studied
seems an interesting specification of contextual analysis models, and
that the Rao-Swamy-Johansgn weighted Teast squares method is an
excellent method to estimate the unknown parameters of the model.
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