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1: CAUSAL MODELS

Suppose 5',...,§m are centered random variables with finite variances,

1

not necessarily distinct. We use the convention of underlining random variables
(Hemelrijk, 1966). A causal model for our random variables is a directed
graph, with the variables as edges. If Ej is adjacent to 51, then we say

that ij is a direct cause of x.. If Ej is adjacent from Xq0 then ﬁj is

1"

a direct effect of El'

if j # 1 and if there is a directed

Now define Ej to be a cause of 51

path from_§j to X - Conversely Ej is an effect of X, if j # 1 and there

is a directed path from x

1 to Ej‘ The cause-effect relation defines another

digraph, which is the transitive closure of the original causal model.

We call it the causal closure of the model.

A causal model is recursive if the graph contains no cycles. Recursive
models are obviously asymmetric. All causal models are irreflexive. All
causal closures are transitive. Causal closures of recursive models are
partial orders.

In recursive models we also define a convenient level assignment. Exogeneous
variables (i.e. transmitters, edges with indegree 0, variables without
causes) have level 0. The level of any other variable is equal to one plus
the maximum of the levels of its direct causes. If Ej has a lower level

andli

3 is a successor of Ej' This

than x then fj is a predecessor of x

1’ 1

defines another partial order, which is an extension of the cause-effect

order. All causes are predecessors, but not all predecessors need be causes.
This ends our brief graph-theoretical treatment of causal models. It

only defines the qualitative components of the model. Our treatment is

by no means new. It is implicit in most older path analysis literature,

>
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and it is already quite explicit in DOrfel (1972), Gordesch (1974). Recent
interest in similar, although generally much deeper, uses of graph theory
has been stimulated by work of Darroch, Lauritzen, Speed, Wermuth, and
others. Compare Kiiveri and Speed (1982) or Hodapp and Wermuth (1983) for
reviews.

From now on we restrict our attention to recursive causal models, and
to the predecessor-successor relation dgfined by the level assignment in

such models. We incorporate a quantitative component, in the form of two

testable assumptions. Assumption A states that the projection of a variable

on the space spanned by its predecessors is equal to the projection on

the space of its direct causes. If we define the residual of a variable

to be the anti~projection on the space of its direct causes, then A states
that the residual of a variable is orthogonal to its predecessors. Assumption
B states that the residuals of different variables are orthogonal.
Assumptions A and B are much weaker than the assumptions used by Wermuth,
Speed, and others. They assume either independence in stead of orthogonality,
or they directly assume multivariate normality. In his PLS work Wold assumes

predictor specifications, which assume linear conditional expectations.

We think that for the least squares analysis of causal models the wide-
sense concepts or projection and orthogonality are more natural than the

strict~sense concepts of conditional expectation and independence. Compare

Doob (1953) for further discussion of this distinction.

2: THE LEAST SQUARES LOSS FUNCTION
The loss function that is minimized in least squares (LS, from now

on) analysis of causal models is very simple. It is,
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|2 (1)
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The norm in (1) is the standard deviation. We restrict B = {le} by requiring
that le = 0 if X 1s not a direct cause of zj. Without loss of generality

we can assume that B is lower-triangular. Minimization of (1) is quite
trivial. We solve at most m separate linear regression problems, i.e. we
project at most m variables on the space spanned by their direct causes.

For the exogeneous variables there is no regression problem. Parameters

are fitted by single equation ordinary least squares.

It is very well known that in recursive causal models, in which we
assume in addition to A and B that variables are multivariate normal, the

negative logarithm of the likelihood can be written as

m m 1 m
B, A = 2 2y" - 2.
o@m) = ] Ingt+ J 6D qIx, - ] 8yx | (2)
j=r+1 j=r+l 1=1

In formule (2) we have ignored irrelevant constants, and terms which only
depend on the distribution of the exogeneous variables. There are r
exogeneous variables, and the variances of the residuals of the remaining
m - r endogeneous random variables are the G%. Observe that in (1) we could
also have numbered the equations starting with j = r + 1.

It follows directly from (2) that the maximum likelihood estimates
of the regression weights are the same as the least squares estimates given
above. Thus ML = LS. The ML-estimates of the residual variances are the
variances of the observed residuals. This result is given explicitly in
Wold (1954). It depends critically on the recursivity of the model, because
the level assigment can be used to factor the likelihood. It also depends

critically on the assumption of multivariate normality, of course.
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In general we can say that LS is more widely applicable than ML. The
geometrical notion of projection makes sense without using any probability
model. The vanishing of regression coefficients, or the orthogonality of
residuals, can be tested by asymptotic methods under much more general

assumptions than multivariate normality.

3: CAUSAL MODELS WITH LATENT VARIABLES
The 'partial' in partial least squarés (PLS, from now on) becomes operative

if the causal model contains latent variables. Models of this type have

been discussed by Wold in his numercus publications dealing with NIPALS
and PLS, and by JOreskog in his numerous publications dealing with the
LISREL-system. Compare Jdreskog and Wold (1982). In econometrics corresponding

errors-in-variables models are reviewed by Aigner, Hsiao, Kapteyn, and

Wansbeek (1983). In this section we start with the least squares approach
to models of this form. Our emphasis is somewhat different from that of
Wold, however, because our starting point is the overall LS loss function
(1) . The model in our approach is completely defined by the digraph. The
translation of the model into the loss function (1) is immediate, and the
computational problem is to minimize this loss function. Thus there is

a single or total least squares criterion, while in Wold's PLS approach

the model consists of various submodels which have their own separate loss
function. We follow the work of De Leeuw, Young, and Takane (1976, and

many later publications) and that of Gifi (1981, and many later publications).
Although the minimization algorithm we use is very similar to the algorithms
used in PLS, it is designed explicitly to minimize the total 1eas£ squares

criterion (1). We prefer to call these algorithms alternating least squares
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(from now on ALS). As far as algorithms are concerned we often have ALS = PLS,
but the total LS criterion (1) is not necessarily the same as the PLS criteria
for the submodels of Wold.

To explain the basic idea of latent variables in a convenient way,
we first observe that random variables on a fixed probability space, with
zero mean and finite variance, define a separable Hilbert space H. Let
S be the unit sphere in this space, i.e. the variables with unit variance.
Suppose J is a subset of the index set {1,...,m} that indicates thoée variables

that are unobserved or latent. The problem now is to minimize (1), which

we now write as O(B’{Ej}jsJ) over B and over Ej in S, for all j in J.

There are several aspects to this extension which are worth discussing
at this point. A latent variable which occurs in only one equation is not
very useful. This equation can always be fitted perfectly, and the corresponding
term simply drops out of the loss function. Thus latent variables usually
occur in more than one equation. They can be both endogeneous (as in the
Hauser-Goldberger path model) or exogeneous (as in the common factor model) .
Because the same latent variable occurs in more than one equation we cannot
use single equation LS techniques any more, the latent variables link the
equations. In some models additional restrictions on the latent variables
are needed. If we introduce more than one latent variable in the common
factor model or the Hauser-Goldberger model, then we are forced to impose
orthogonality conditions on the latent variables +o avoid uninteresting
duplications of results. In some models, for example the canonical analysis
models, we have to require that different latent variables are represented

by the same element of S. Such tricks make it possible to introduce various

special forms of non-recursivity into the models.
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There is another aspect of latent variables that is worth discussing. It
is related to the results by Gifi, De Leeuw, Young, Takane and others in

what is commonly known as nonlinear multivariate analysis with optimal

scaling using alternating least squares. Suppose Kj, with j=1,...,m, are

convex cones in the space H. A much more general problem than the one we

have discussed above is the minimization of U(B'ij) over B:and over all
X., with the restriction that ﬁj must be in the intersection of Kj and
S. We have already discussed two important special cases. If Kj is a single
ray then ij is an observed variable, if Kj is the whole space H then ij
is a latent variable. There are, however, many interesting intermediate
cases. Discrete random variables, for instance, assuming kj possible values,
can be quantified. The quantifications define a kj - 1 dimensional subspace

of H. Numerical variables can be transformed. Transformations also define

a subspace of H, which can be approximated by using polynomials or splines

or other convenient finite dimensional families. If we require monotonicity

the quantification or transformation subspaces are replaced by pointed

cones. There are many examples in the book by Gifi (1981, 1984:). Important
special cases have also been discussed separately. Principal component

analysis is treated by De Leeuw (1982), two-set canonical analysis by

Van der Burg and De Leeuw (1983), and N-set canonical analysis by Van der

Burg, De Leeuw, and Verdegaal (1984). Analysis of causal models, based

on loss function (1), has only been discussed very briefly and very incomplete-
ly in the Gifi or ALSOS system. Our systematic treatment of the latent

variable as just another measurement level in the sequence numerical, ordinal,

nominal, latent is new, and seems very convenient.

It is easy to show, by elementary algebraic manipulations, that in the
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case of the common factor model, or the Hauser~Goldberger model, or the
canonical correlation model, minimization of the loss function (1) over
weights and latent variables gives the same solution as some of Wold's
PLS techniques for these models. Other solutions can be derived by modifying
the model (changing the direction of arrows, duplicating variables at different
places in the model). We shall not show this in detail, because it does
not belong in a discussion paper. Nevertheless we re-emphasize that our
formulation of PLS (or ALS) makes it easy to extend all causal models to
nominal, ordinal, 'splinical', and other types of variables. The algorithm
alternates the fitting of B (a linear projection problem) with the fitting
of the Ej in their cones (cone projection problems). The computer program
that will do all this is called PATHALS. It only exists in preliminary
APL versions.

There 1s another obvious generalization of the ALS approach that we
discuss here. Suppose we do not minimize g (B) of (1) but @(B,A) of (2) by
our alternating least squares algorithms. Several different special cases
of this could be considered. If the 6% are known, then we simply apply
welghted least squares to fit the latent variables. The regression weights
are still computed by single equation OLS. If the 6% are known up to a
proportionality constant, the same thing is true. If the 6% are known to
be equal, we are in fact back in the situation of minimizing (1). If the
82 are unknown, we consider them as additional structural parameters that
must be estimated. We insert an additional step in our minimization cycles,
in which a@(B;A) is:minimized over 6?- This is very easy, the estimate is
simply the variance of the observed current residual. We have to be very

careful in this most general of cases, however. If we can choose latent

A
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variables and regression weights in such a way that the residual for one of
the ij vanishes, then loss function (2) is unbounded below, and the minimum
we are looking for does not exist. This was already discussed for the special
case of the common factor model by Anderson and Rubin (1956). Of course
if an equation contains a completely unrestricted latent variable, then
the residual can always be made equal to =zero.
Procedures that minimize (2) over latent variables and structural parameters
are still called least squares methods. This is true if the residual variances

are known, partially known, or completely unknown.

4: MAXIMUM LIKELIHOOD WITH LATENT VARIABLES

If there are no latent variables, then ML estimation can be done by
single equation OLS. This makes it interesting to look at algorithms which
first complete the likelihood, by computing an estimate or proxy for the
latent variable, and then perform ML, = LS to estimate the structural
parameters. We have already seen that ALS, our version of PLS, is such

an algorithm. It computes proxies by minimization. Or, to put it differently,

the missing information is treated as a set of additional parameters over
which we minimize. In a very interesting recent paper Little and Rubin
(1983) discuss this technique of estimating missing information in general
terms. They find that it can lead to estimates that are badly biased, also
of the structural parameters. We briefly explain the problems in terms

of the difference between structural and functional models.

Suppose Ei are the n independent m vectors corresponding with the n
observations. W u .= . oyl h ., are independent
bs ations e suppose that X, i X;+ where the X5 P

and identically distributed centered m-vectors. For an observed variable
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X.. we assume that 1ﬁj = 0 for all i. But for a latent variable the uij can

all be different. The negative logarithm of the likelihood is

T T 1 -1 ¢ m
O(BIAIM) = 2 1n 62 + 2 (62)_ n_ 2 ((2E _ u) - 2 B. (E - ))2-
j=r+1 j=r+l ¥ i=1 1] 1] 1=1 Jl il il

Mimimizing this over the unknown parameters is the same thing as PLS or ALS.
Thus we have shown that PLS can be interpreted as ML fitting of a partial.

functional and partial structural multinormal model with incidental parameters.

Inconsistencies arise, because the number of parameters tends to infinity
with the number of observations.

Our emphasis dictates, that PLS should not be treated as a somewhat
aberrant and deficient method of estimation in structural models, but as
the ML method in models with functional latent variables. This makes our
results different from, and perhaps more enlightening than, those of Dijkstra
(1983), who compares PLS and LISREL as techniques to fit a common structural
model. Of course we can continue to interprete PLS, as we have done from
the beginning, as a very natural method to fit causal models that are defined
only in terms of projection.

There is another way to define proxies, which corresponds with ordinary
ML in structural models. Wold has said, on many occasions, that one of
the advantages of PLS over LISREL is that PLS gives estimates of the ldtent
variables and LISREL does not. Moreover PLS is the simpler algorithm, because
it consists of linear regressions only. This may be true for LISREL as
a program, but it is not true for ML as a technique. The work of Dempster,
Laird, and Rubin (1977), which has been applied to common factor analysis
by Rubin and Thayer (1982) and to the Hauser~Goldberger model by Chen (1981),

shows that ML defines it proxies by expectation. The current best proxy
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is the conditional expectation of the latent variable, given the observed
variables and the current estimates of the structural parameters. Thus
proxies are also computed by regression in the ML case. Of course wé know
that structural ML estimates have statistical optimality properties, among
which consistency. It may be true, as it is in factor analysis (Anderson
and Rubin, 1956), that structural ML estimates are also consistent if the
functional model is true. If the data are multinormally distributed it

seems that there is no reason to apply PLS or ALS, we should simply apply
structural ML, even if the model is partly functional. Our result that PLS
= ML in certain functional models is mostly or only of theoretical interest.
If the data are not normal, the choice is not so simple. The EM-algorithm
for multinormal ML defines the proxies by expectation, the PLS and ALS
algorithms define them by minimization. Both are forms of projection, and
are closely related. The two techniques will be especially close if residual

variances are equal, but a more detailed comparison is certainly needed.
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